Trouble Shooting Guide Book [RAC]

CAUTION

Make sure to fully read and understand the safety precautions described in the SVC manual before SVC. Only authorized personnel are allowed to use this service guide.

Development History

Date	Record of changes	Range of modification	Person in charge	Approval

Development History

Date	Record of changes	Range of modification	Person in charge	Approval

060

061

Contents

Trouble Shooting Guide Book

1. Error message	
Error Indicator	01
Caution	01
Indoor Unit Error	01
Outdoor Unit Error	01
Descriptions of main symbols	01
Introduction of Guide Form	01
2. T/S Guide (Non-Error Code)	
Indoor Unit Leakage	02
No operation of Indoor Unit (Power insensitive)	02
Bad reception & No operation of Wireless Remote Control	02
Weak Air conditioning/Heating	02
Vibration/Resonance noise of Indoor Unit	02
Touch noise of Outdoor Unit	02
Working of circuit breaker during operation	03
Bad operation of AC Fan	03
Dad oporation of the Fall	00
3. T/S Guide (Error Code)	
CH 01 Indoor Unit Room Temp Sensor Open/Short	03
CH 02 Indoor Unit Inlet Pipe Sensor Open/Short	03
CH 06 Indoor Unit Outlet Pipe Sensor Open/Short	03
CH 12 Indoor Unit Middle Pipe Sensor Open/Short	03
CH 03 Bad communication of wired remote control	03
CH 04 Float Switch Error (Optional)	03
CH 05/53/93 Indoor/Outdoor Unit communication Error	04
CH 09 Indoor Unit EEPROM Error	04
CH 10 Indoor BLDC Fan Locking	04
CH 21 High Current Into the Compressor (DC Peak)	04
CH 29 Compressor input Phase Current is High	04
CH 22 AC input Current is Higher then the Limit	04
CH 23 DC Link Voltage Low / High	04
CH 26 DC Compressor Position Error	05
CH 27 PSC Fault Error	05
CH 32 High Temperature in Discharge Pipe of the Inverter Compressor	05
CH 34 High Pressure Sensor Error (High)	05
CH 35 Low Pressure Sensor Error (Low)	05
CH 36/38 Refrigerant Leakage Detection	05
CH 37 Failure Compressing Ratio	05
CH 40 Inverter CT Sensor Open/Short	05
CH 41 Inverter Discharge Sensor Open / Short	06
CH 44 Outdoor Air Temperature Open / Short	06
CH 45/48 Outdoor Unit Pine Sensor Open / Short	OF

CH 46 Compressor Suction Sensor Open / Short

CH 42 Low Pressure Sensor Open / Short

Trouble Shooting Guide Book

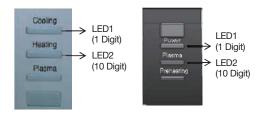
CH 43 High Pressure Sensor Open / Short	061
CH 51 Excessive number of access device with over capacity	062
CH 61 High Temperature in Condenser Pipe	063
CH 62 High Temperature in Outdoor PCBA Heat Sink	065
CH 67 Outdoor BLDC Fan Locking	066
CH 72 Switching for 4 Way Valve is Failed	067
•	
4. Appendix	
A Installation Checking	
A1 Installation Location	
A1-1 Check Indoor Unit Location	070
A1-2 Check Outdoor Unit Location	072
A2 Piping Work	
A2-1 Check Piping Connection	075
A2-2 Check Welding(Brazing) Work	078
A3 Electric Wiring Work	
A3-1 Check Wire Specification	079
A3-2 Check Wiring Connection	080
A4 Insulation & Drain Work	
A4-1 Standard Insulation Work	083
A4-2 Water Leak Test	085
A5 Vacuum	
A5-1 Gas Leak Test	089
A5-2 Vacuum Work Process	090
A5-3 Additional Charge Refrigerant	092
A6 Test Run	
A6-1 How to Operating	093
A6-2 Check Item	094
B LG SIMs	
B1 How to Use LG SIMs 2.0	
B1-1 Specification	098
B1-2 Main Information	099
B1-3 Outdoor Information	102
B1-4 Indoor Information	104
B1-5 Graph (Temp. & Electronic)	105
B2 Basic Checking Guide	
B2-1 Power Apply Check	107
B2-2 Product Operation Check	110
B3 Abnormal Case Guide	

Bo-1 No Helligerant / Delective delisor	112
B3-2 Cycle Block (EEV, SVC Valve Closed)	113
B3-3 Cycle Block (No Action of EEV) / Bad Location of Td Sensor	114
B4 Reference Cycle Temperature Table	
B4-1 Cooling Mode	115
B4-2 Heating Mode	117
· ·	
C Electrical Part Checking Method	
C1 PCBA	
C1-1 Classification of PCBA Type	120
C1-2 Key Measurement Point for each Type	125
C1-3 Main Fuse	132
C1-4 BLDC Fan Motor Fuse	134
C1-5 SMPS Fuse	135
C1-6 SMPS Circuit Check	136
C1-7 Sensing Unit Circuit Check	143
C1-8 DC-Link Check	150
C1-9 Communication Part 72V Check	151
C1-10 IPM Check	153
C1-11 External Fan IPM Check	155
C1-12 PFCM Check	156
C1-13 Heat-Sink Check	157
C2 Sensor	
C2-1 Air / Pipe Sensor Check	158
C2-2 Pressure Sensor Check	159
C2-3 Indoor / Outdoor Sensor Resistance Table	160
C3 Compressor	.00
C3-1 Compressor and Pipe Insulation Check	164
C3-2 Compressor Line Resistance Check	164
C4 Motor	
C4-1 BLDC Motor	165
C4-2 AC Motor	166
C4-3 External Fan Motor	167
C5 4 Way Valve	168
C6 EEV	169
C7 Etc.	100
C7-1 Sump-Heater	170
C7-2 Reactor Connection	171
C7-3 Communication Line	172
C7-4 Main & Terminal Line, Compressor Harness	173
C. T. Man. & Tollinia Ello, Compressor Harrisos	.,,

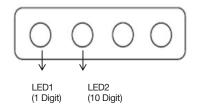
1. Error message **LG Electronics**

■ Error Indicator

- · The function is to self-diagnosis air conditioner and express the troubles identically if there is any trouble.
- · If more than two troubles occur simultaneously, primarily the highest trouble of error code is expressed.
- · After error occurrence, if error is released, error LED is also released simultaneously.
- · To operate again on the occurrence of error code, be sure to turn off the power and then turn on.
- · Having or not of error code is different from Model.

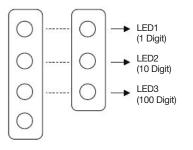

■ Caution

- · CH01~12 are related to the indoor unit problems, and CH21~73 are related to the outdoor unit problems except CH05/53. Do not replace the indoor unit parts based on CH21~73 errors except CH53, or replace the outdoor unit parts based on CH01~12 errors except CH05.
- · Main errors among the outdoor unit errors will display in the indoor unit only when they are detected 10 times per hour. Therefore the type of errors can be identified from LED on the outdoor unit PCBA even before it is displayed in the indoor unit. Check for the LED on the outdoor unit PCBA.
- · After removing the cause of CH error, turn power off and on after 3 minutes, and then Display indicator will disappear from the outdoor unit PCBA or indoor unit. It requires 3 minutes to fully discharge the outdoor unit PCBA.

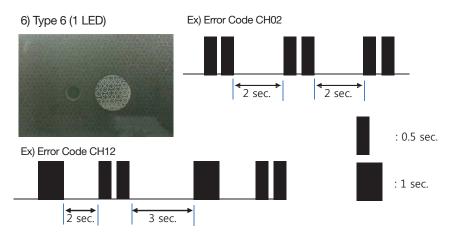

■ Indoor Unit Error

		Number of flashes	
Error Code	Descriptions	Indoor unit	
Codo		LED 1	LED 2
01	Indoor unit room temperature sensor error	1 time	-
02	Indoor unit inlet pipe sensor error	2 times	-
03	Wired remote control error	3 times	
04	Float switch error(optional)	4 times	-
05	Communication error between indoor & outdoor units	5 times	-
06	Indoor unit outlet pipe sensor error	6 times	-
09	Indoor unit EEPROM error	9 times	-
10	Indoor unit BLDC motor fan lock	-	1 time
12	Indoor unit middle pipe sensor error	2 times	1 time

1) Type 1 (2 LED)
- SW, SB, SC Chassis


2) Type 2 (Horizontal 4 LED) - S4, S5 Chassis

3) Type 3
- SH Chassis

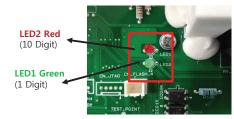


4) Type 4 (vertical 3 or 4 LED) - SA, SJ Chassis

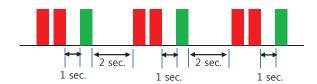
5) Type 5 (Number Display Model)

7) Type 7 (Gallery)

■ Outdoor Unit Error

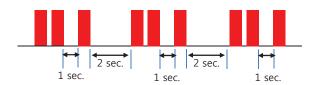

1) 2 LED Type

		Error In	dication
Error Code	Description	In/Ou	ıtdoor
Oodc		LED 2	LED 1
21	DC Peak (IPM Fault)	2 Times	1 Time
22	CT 2 (Max CT)	2 Times	2 Times
23	DC Link Low Volt	2 Times	3 Times
26	DC Comp Position Error	2 Times	6 Times
27	PSC Fault	2 Times	7 Times
29	Comp Phase Over-Current	2 Times	9 Times
32	Inverter Compressor D-Pipe Overheat	3 Times	2 Times
34	High Pressure Sensor High	3 Times	4 Times
35	Low Pressure Sensor Low	3 Times	5 Times
36/38	Refrigerant Leakage Detection	3 Times	6/8 Times
37	Exceed the Compression Ratio Limit	3 Times	7 Times
40	CT Sensor Error	4 Times	-
41	D-Pipe Sensor Error	4 Times	1 Times
42	Low Pressure sensor Error	4 Times	2 Times
43	High Pressure sensor Error	4 Times	3 Times
44	Outdoor Air Sensor Error	4 Times	4 Times
45	Cond. Middle Pipe Sensor Error	4 Times	5 Times
46	S-Pipe Sensor Error	4 Times	6 Times
51	Excess Capacity (Mismatching between In/Outdoor unit)	5 Times	1 Times
53	Communication Error (IN-OUT)	5 Times	3 Times
61	Cond. Pipe High	6 Times	1 Times
62	Heat Sink Sensor Temp. High	6 Times	2 Times
67	BLDC Motor Fan Lock	6 Times	7 Times
72	Detect 4 Way Valve Transfer Failure	7 Times	2 Times
93	Communication Error (IN-OUT)	9 Times	3 Times


2) 1 LED Type

			Error Inc	dication	
Error Code	Description	Outdo	or Unit	Indoo	or Unit
Codo		Red	Red	LED 2	LED 1
21	DC Peak (IPM Fault)	2 Times	1 Time	2 Times	1 Time
22	CT 2 (Max CT)	2 Times	2 Times	2 Times	2 Times
23	DC Link Low Volt	2 Times	3 Times	2 Times	3 Times
26	DC Comp Position Error	2 Times	6 Times	2 Times	6 Times
27	PSC Fault	2 Times	7 Times	2 Times	7 Times
29	Comp Phase Over-Current	2 Times	9 Times	2 Times	9 Times
32	Inverter Compressor D-Pipe Overheat	3 Times	2 Times	3 Times	2 Times
34	High Pressure Sensor High	3 Times	4 Times	3 Times	4 Times
35	Low Pressure Sensor Low	3 Times	5 Times	3 Times	5 Times
36/38	Refrigerant Leakage Detection	3 Times	6/8 Times	3 Times	6/8 Times
37	Exceed the Compression Ratio Limit	3 Times	7 Times	3 Times	7 Times
40	CT Sensor Error	4 Times	-	4 Times	-
41	D-Pipe Sensor Error	4 Times	1 Times	4 Times	1 Times
42	Low Pressure sensor Error	4 Times	2 Times	4 Times	2 Times
43	High Pressure sensor Error	4 Times	3 Times	4 Times	3 Times
44	Outdoor Air Sensor Error	4 Times	4 Times	4 Times	4 Times
45	Cond. Middle Pipe Sensor Error	4 Times	5 Times	4 Times	5 Times
46	S-Pipe Sensor Error	4 Times	6 Times	4 Times	6 Times
51	Excess Capacity (Mismatching between In/ Outdoor unit)	5 Times	1 Times	5 Times	1 Times
53	Communication Error (IN-OUT)	5 Times	3 Times	5 Times	3 Times
61	Cond. Pipe High	6 Times	1 Times	6 Times	1 Times
62	Heat Sink Sensor Temp. High	6 Times	2 Times	6 Times	2 Times
67	BLDC Motor Fan Lock	6 Times	7 Times	6 Times	7 Times
72	Detect 4 Way Valve Transfer Failure	7 Times	2 Times	7 Times	2 Times
93	Communication Error (IN-OUT)	9 Times	3 Times	9 Times	3 Times

3) How they display in the outdoor unit PCBA, 2 LED Model


Ex) Error Code CH21

4) How they display in the outdoor unit PCBA, 1 LED Model

Ex) Error Code CH21

■ Descriptions of main symbols

EXECUTION

- · It means execution:
- Executes orders in the square box.

- · It means determination:
- Selects YES if correct, NO if incorrect.

REMEDY

- · It means solution:
- Executes orders in the square box.

CHECK for REPLACE PCBA

- · It means PCBA check:
- It is stage to check PCBA fault when replacing PCBA
- Check when the judgment of PCBA fault is not sure

SIMs

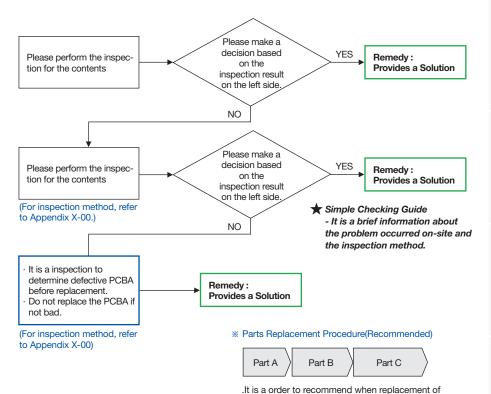
- · It means SIMs module utilization is available:
- Utilize SIMs module to save the test time and convenience
- Easy to collect information for Cycle / Enables judgment for the faulty

· It means Simple Checking Guide

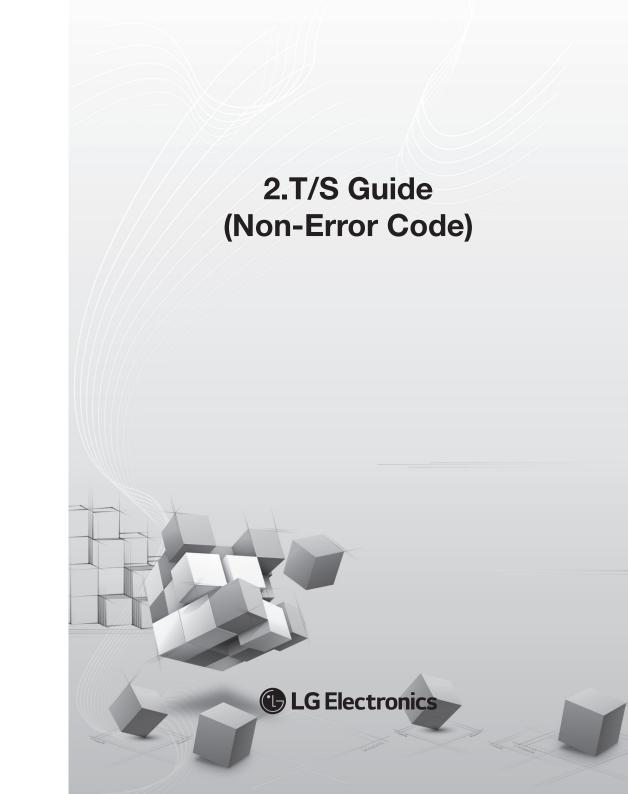
This symbol indicates the possibility of death or serious injury!

· Dangerous Voltage! Be careful!

Additional Information


■ Introduction of Guide Form

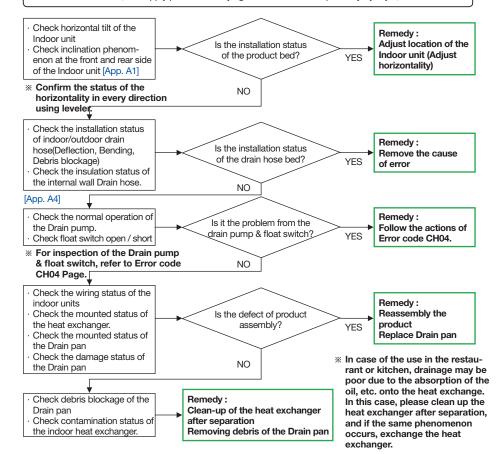
Error Code	Error Detection	Cause of Error	Check Point
CH 00 It displays an error code.	It displays the description for the error code.	· It describes the cause of error code.	It describes the details to be confirmed when error code occurs.


It describes the specific considerations before the service for the product. Be sure to perform the service after confirming the warning.

SIMs It is a item available for inspection through LG SIMs.

016 TROUBLE SHOOTING GUIDE BOOK

the components is need during service

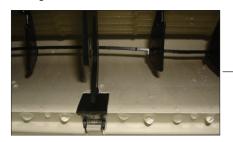

■ Indoor Unit Leakage

Symptoms	Cause of symptoms	Check Point
· Leakage of indoor unit	Drain hose installation defects Clogged with debris inside of the drain hose Bad horizontal installation of the product Bad wiring clean-up Heat exchanger contamination Damaged drain pan	Check the status of Drain hose Installation Check debris in the Drain hose Check horizontal status of the Indoor unit Check inner wiring of the Indoor unit Check status of the Indoor unit heat exchanger Check status of the Indoor unit Drain pan

Be sure to prevent condensate from flowing into the electronic units when perform leak test. Be sure to cut off the main power when performing leak test.

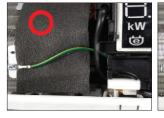
After completing leak test, confirm the status of inflow of the condensate to the electronic units, and apply power after drying the electronic units perfectly by dryer, etc.

Field failure examples


- Bad installation status of the Indoor unit (tilted)

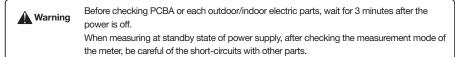
- Bad insulation status of the Drain hose

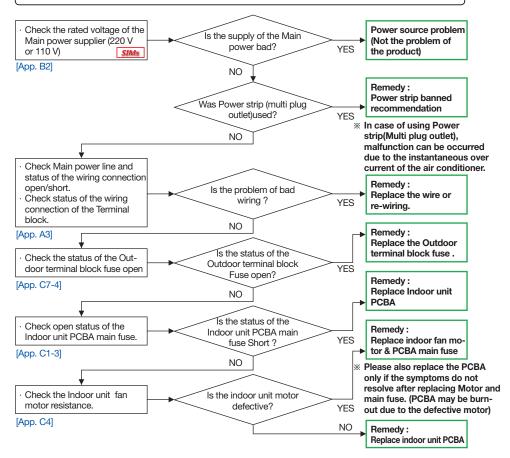
- Oil stain absorption of the Heat exchanger


- Leakage at the outlet of the Indoor unit

Shield of Heat exchanger by debris blockage

- Bad wiring status of the Indoor unit

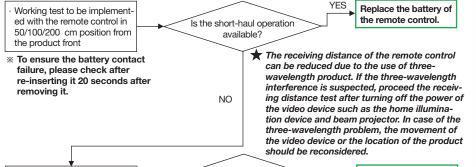




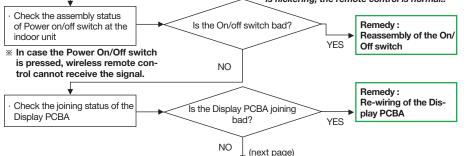
■ No operation of Indoor Unit (Power insensitive)

Symptoms	Cause of symptoms	Check Point
No operation of the indoor unit(Power insensitive)	No power applied on the wall Power strip(multi plug outlet) used Bad Main power line Bad connecting wire Outdoor terminal block fuse open Indoor unit PCBA burn-out	Check whether Power strip was used Check wiring connection / main power line open short Check outdoor terminal block fuse Check Indoor unit PCBA burnout

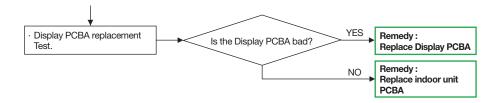
■ Bad reception & No operation of Wireless Remote Control


Symptoms	Cause of symptoms	Check Point
Bad reception of the wire- less remote control and no operation	Low battery voltage of the remote control Bad Remote control Interference of three-wavelength lamp Bad Display PCBA Bad PCBA wiring Bad Knob switch Bad PCBA	Replace the battery of the remote control Check the defect of the remote control Check Display PCBA wiring Check the defect of the Display PCBA Check wiring of the Knob switch Check the defect of the Knob switch Check the defect of the PCBA.

Check whether the signal is


Before checking PCBA or each outdoor/indoor electric parts, wait for 3 minutes after the power is off.

When measuring at standby state of power supply, after checking the measurement mode of the meter, be careful of the short-circuits with other parts.


Replace wireless sent from the remote control # If you press the button of the remote control while looking the signal output part of the NO remote control using the function of the mobile phone or digital camera, you can see the lights of the output part flickering. If the light is flickering, the remote control is normal..

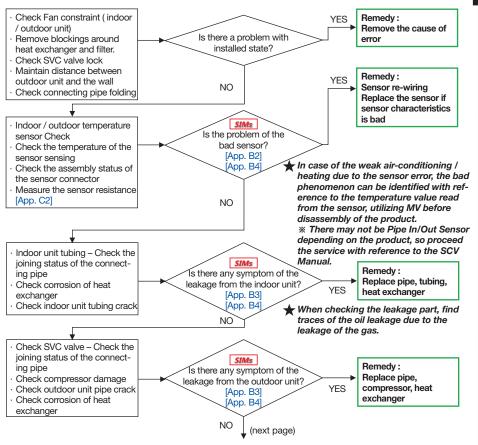
Is the remote control bad?

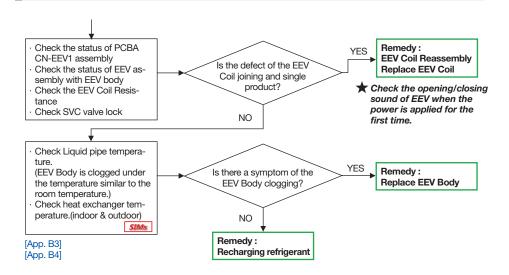
022 TROUBLE SHOOTING GUIDE BOOK

Remedy:

Simple Wireless remote control test

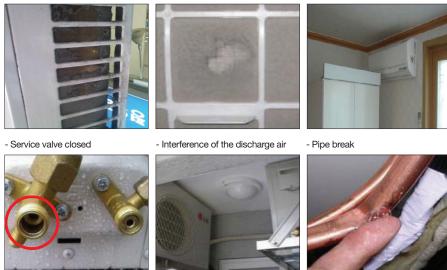
★ In case of the normal product, if you press the button while taking a photograph using the camera function of the mobile phone or digital camera, you can confirm the light of the output part.

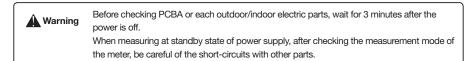

■ Weak Air conditioning/Heating

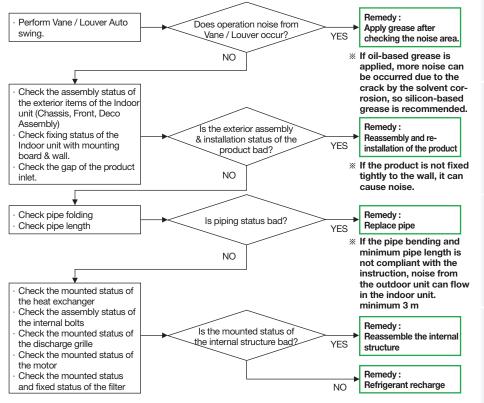

Symptoms	Cause of symptoms	Check Point
Weak Air- conditioning/ Heating	Bad installation status Bad characteristics of the Indoor / outdoor unit temperature sensor Refrigerant leakage EEV insert defect / Blockage Refrigerant shortage	Check the status of the product installation Check the resistance of the Indoor / outdoor unit temperature sensor Check symptom of the refrigerant leakage Check the status of the EEV Check the quantity of the refrigerant

Warning

Before checking PCBA or each outdoor/indoor electric parts, wait for 3 minutes after the power is off.

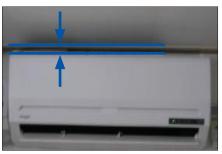

When measuring at standby state of power supply, after checking the measurement mode of the meter, be careful of the short-circuits with other parts.


Field failure examples


- Airflow is blocked

■ Vibration/Resonance noise of Indoor Unit

Symptoms	Cause of symptoms	Check Point
Indoor unit vibration/ Resonant noise	Bad assembly Non-fastening of bolt Parts interference of the exterior movement Pipe bending Non-compliance of the minimum pipe length Refrigerant overcharge	Check the assembly status of the indoor unit. Check bolt fastening status. Check interference during operation of the exterior items (Louver/Vane) Check pipe break. Check pipe length. Check Refrigerant quantity

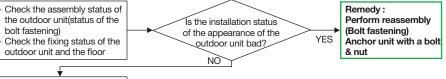


Field failure examples


- Noise occurrence due to the pipe break

- Noise occurrence due to the inlet shield

- Noise inflow of the outdoor unit due to the bad pipe length


■ Touch noise of Outdoor Unit

Symptoms	Cause of symptoms	Check Point
Outdoor unit touch noise (vibration)	Bad bolt fastening Interference between Pipe and Front/ Side panel Touch interference between pipes Debris flow in the inside of the machine room of the outdoor unit	Check bolt assembly status Check interference status of the pipe and the exterior items. Check the separation distance between the pipes Check the existence of foreign objects inside the machine room

Before checking PCBA or each outdoor/indoor electric parts, wait for 3 minutes after the power is off.

When measuring at standby state of power supply, after checking the measurement mode of the meter, be careful of the short-circuits with other parts.

Is the pipe mounted

status of the inner side of the

machine room bad?

NO

Check the touch phenomenon between the pipes of the inside of the machine room of the outdoor unit.

Check interference of the pipe and the external panel

Check the mounted status of the inside structure of the machine room(status of the bolt fastening)

· Check the equipped structure of the electric components. Check the status of the wiring

clean-up

Field failure examples

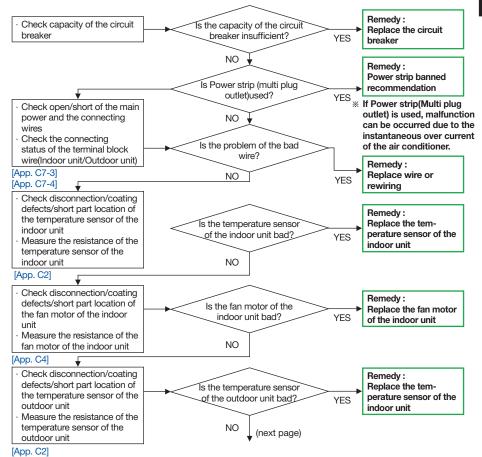
Remedy:

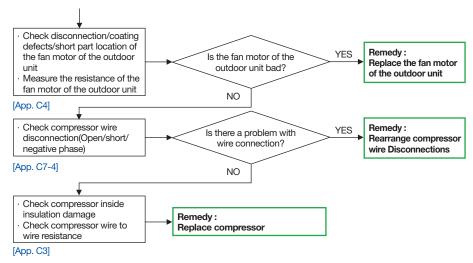
Adjust pipe gap

Adjust interference part

- Occurrence of the vibration noise caused by the interference of the front panel and the pipe

- Occurrence of the vibration noise caused by the bad fixing of the outdoor unit




■ Working of circuit breaker during operation

Symptoms	Cause of symptoms	Check Point
Working of the circuit breaker dur- ing operation	Using multi plug outlet Shortage of the circuit breaker capacity Bad sensor Bad Fan motor Current leakage of the compressor	Main power check Circuit breaker capacity check Electric parts leakage current check

Before checking PCBA or each outdoor/indoor electric parts, wait for 3 minutes after the **Warning** power is off. When measuring at standby state of power supply, after checking the measurement mode of the meter, be careful of the short-circuits with other parts.

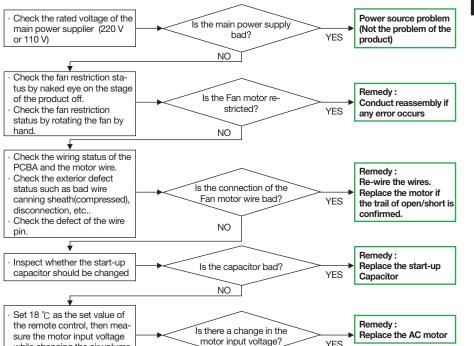
LG Electronics

※ Parts Replacement Procedure(Recommended)

Field failure examples

- Disuse of the ground cord

- Mis-wiring of the compressor wire


■ Bad operation of AC Fan

Symptoms	Cause of symptoms	Check Point
Bad operation of the AC FAN (Indoor AC fan applied model)	Bad wiring of the AC motor Bad AC motor capacitor Decline of the applied voltage(over 20%)	Check the status of Fan constraint Check the wiring status of the motor Check the capacitor Check the applied voltage Check whether the PCBA is bad

Before checking PCBA or each outdoor/indoor electric parts, wait for 3 minutes after the power is off.

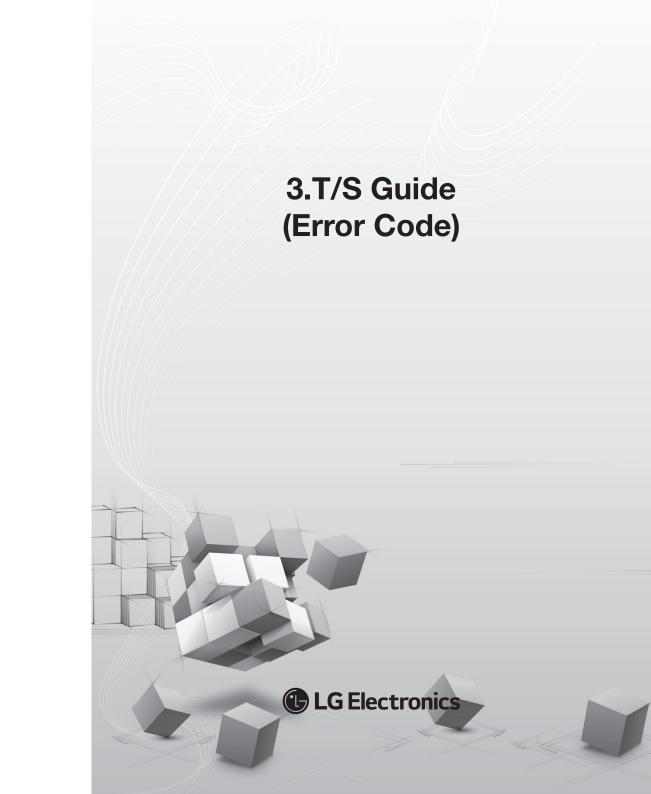
When measuring at standby state of power supply, after checking the measurement mode of the meter, be careful of the short-circuits with other parts.

**** Parts Replacement Procedure(Recommended)**

while changing the air volume

as High/Mid/Low.

* Replace the PCBA if there is no change of the motor input voltage upon change of the air volume of the indoor unit under the condition of operation of the outdoor unit.


Replace the indoor unit

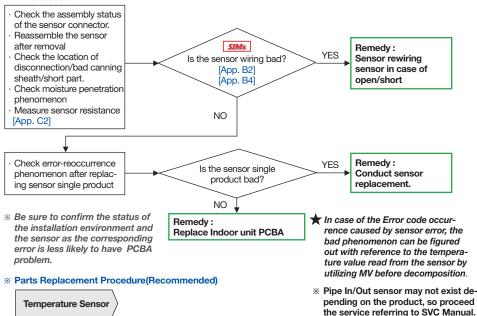
Remedy:

PCBA

YES

NO

- CH 01 Indoor Unit Room Temp Sensor Open/Short
 - CH 02 Indoor Unit Inlet Pipe Sensor Open/Short
 - CH 06 Indoor Unit Outlet Pipe Sensor Open/Short
 - CH 12 Indoor Unit Middle Pipe Sensor Open/Short

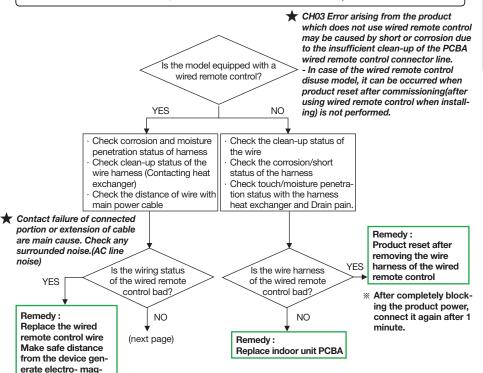

Error Code	Error Detection	Cause of Error	Check Point
CH01	Open/Short of the indoor room temperature sensor	Sensor mis-wiring/short Penetration of moisture to the sensor	Check mis-wiring of the sensor connector Check the part of the bad sen-
CH02	Open/Short of the indoor heat exchanger inlet pipe sensor	Bad canning sheath Sensor housing removed	sor wire canning sheath/short Check whether the sensor single product is bad
CH06	Open/Short of the indoor heat exchanger outlet pipe sensor		origio product lo bad
CH12	Open/Short of the indoor heat exchanger mid-pipe sensor		

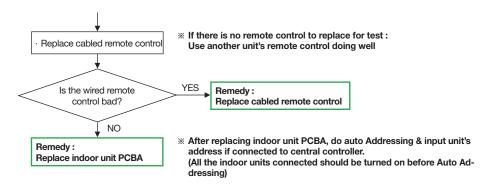
Before checking PCBA or each outdoor/indoor electric parts, wait for 3 minutes after the power is off.

When measuring at standby state of power supply, after checking the measurement mode of the meter, be careful of the short-circuits with other parts.

 Check the connector side of the indoor unit PCBA when Error Code occurs. If Short key or Float Switch(Drain Pump) is connected to the corresponding sensor connector, follow the Flow Chart of the Error Code 04.

■ CH 03 Bad communication of wired remote control


Error Code	Error Detection	Cause of Error	Check Point
CH03	Bad communication of the wired remote control	Interference (Twisted/Non Separation) of AC Line and wired remote control line Poor contact/Disconnection of wired remote control(DC Line) and PCBA harness PCBA harness Flooding/corrosion Remote control fault Indoor unit PCBA fault	Check the molding status of the wired remote control wire. Check the interference status with DC line(Twisted/Mixed/ Non-separation) Check communication cable problem Check harness Flooding/corrosion Check Remote control fault Check Indoor unit PCBA fault



netic wave(DC/AC).

Before checking PCBA or each outdoor/indoor electric parts, wait for 3 minutes after the power is off.

When measuring at standby state of power supply, after checking the measurement mode of the meter, be careful of the short-circuits with other parts.

Parts Replacement Procedure(Recommended)

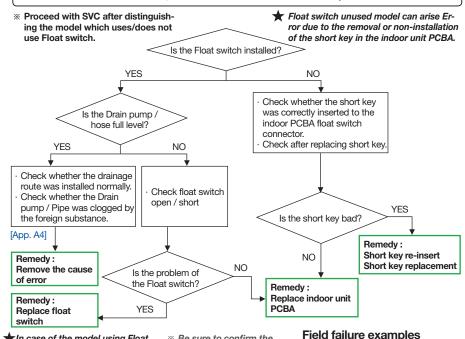
Wire Harness Cabled remote control	Indoor unit PCBA	\rangle
------------------------------------	------------------	-----------

Field failure examples

- Molding with external power supplier(Non-separation)

- Wire of the wired remote control touched the heat exchanger

- Short by the moisture penetration to the wire of the wired remote control


■ CH 04 Float Switch Error (Optional)

Error Code	Error Detection	Cause of Error	Check Point
CH04	Float switch error	Drain pump fault Drain hose clogging Float switch fault	Check drain pump / float switch Check drain pipe location Check clogging of drain pipe Check short key in the indoor unit PCBA

Warning

Before checking PCBA or each outdoor/indoor electric parts, wait for 3 minutes after the power is off.

When measuring at standby state of power supply, after checking the measurement mode of the meter, be careful of the short-circuits with other parts.

★In case of the model using Float switch, if CH04 occurs even when inserting short key to the PCBA Connector side, judge it as PCBA fault and replace it. Otherwise, do not replace the PCBA.

* Be sure to confirm the status of the installation environment and the sensor as the corresponding error is less likely to have PCBA problem.

**** Parts Replacement Procedure(Recommended)**

Short key Float switch

■ CH 05/53/93 Indoor/Outdoor Unit communication Error

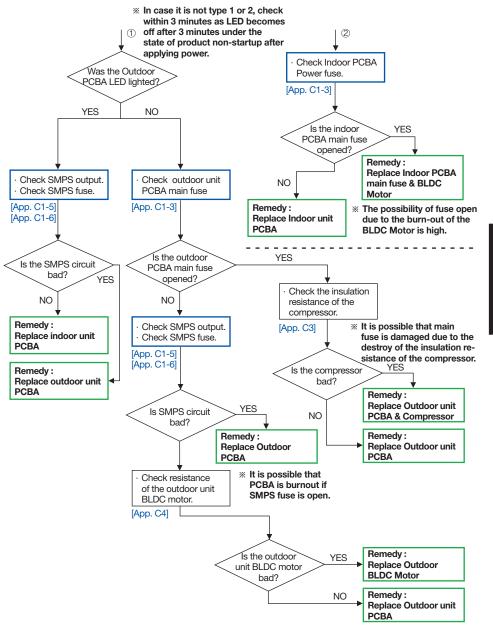
Error Code	Error Detection	Cause of Error	Check Point
CH05 CH53 CH93	Indoor / outdoor unit com- munication error	No power on indoor unit Indoor/outdoor unit power connection error / communication line not installed Communication error caused by external noise Indoor/outdoor unit communication circuit parts burned	Disconnection of the transmission connection Improper connection of terminal block communication wire Improper wiring of communication L-N wire(indoor / outdoor unit communication wire) No power supply due to indoor/outdoor unit PCBA burn

Marning

Before checking PCBA or each outdoor/indoor electric parts, wait for 3 minutes after the power is off.

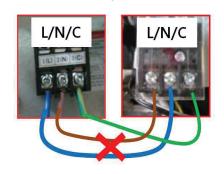

When measuring at standby state of power supply, after checking the measurement mode of the meter, be careful of the short-circuits with other parts.

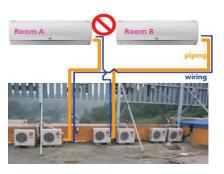
- Check the connection status of the ground wire.
- Check the connection status of the power wire and communication wire (L & N)
- communication line Check corrosion status and
- contact point of the indoor/ outdoor connector


[App. A3] [App. C7-4]

- ★ If CH10 occurs when starting up the product after removing indoor BLDC connector, judge it as communication error due to the bad indoor motor.
- If CH67 occurs when starting up the product after removing outdoor BLDC connector, judge it as communication error due to the bad outdoor motor.

SIMs [App. B2]


PCBA



*** Parts Replacement Procedure(Recommended)**

Connection cable (between In/Outdoor)	Fan motor	Indoor unit PCBA main Fuse	Indoor unit PCBA	Outdoor Unit PCBA
---------------------------------------	-----------	-------------------------------	---------------------	----------------------

Field failure examples

■ CH 09 Indoor Unit EEPROM Error

Error Code	Error Detection	Cause of Error	Check Point
CH09	Indoor EEPROM error (Option PCBA)	· Poor connection of option PCBA	Check the connection status of he option PCBA(verify with hands)

Warning

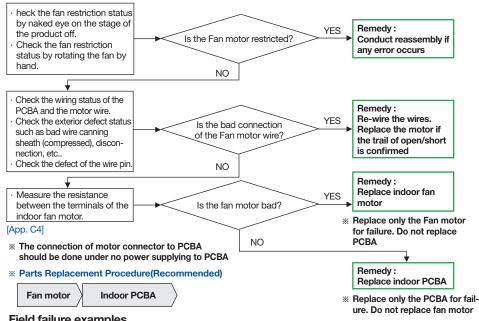
Before checking PCBA or each outdoor/indoor electric parts, wait for 3 minutes after the power is off.

When measuring at standby state of power supply, after checking the measurement mode of the meter, be careful of the short-circuits with other parts.

Check if the Option PCBA is properly connected.

**** Parts Replacement Procedure(Recommended)**

Option PCBA

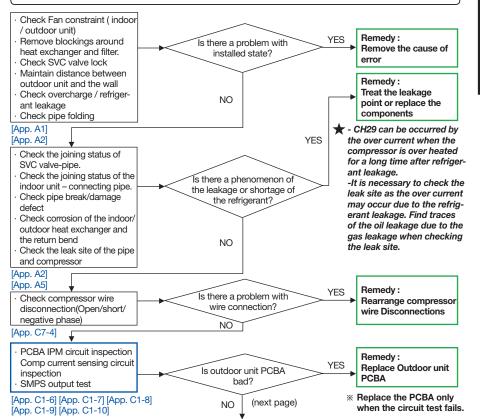

■ CH 10 Indoor BLDC Fan Locking

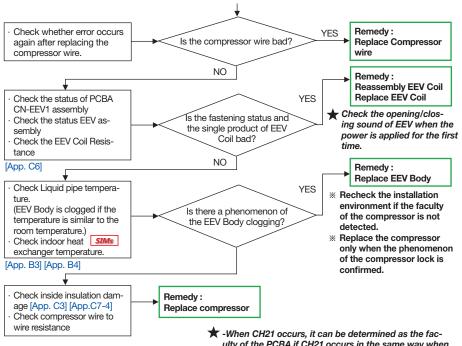
Error Code	Error Detection	Cause of Error	Check Point
CH10	Indoor BLDC fan locking (faulty motor operation)	Fan lock by physical force (foreign structure stuck in the motor) Poor connection of motor connector Motor failure PCBA failure	Structural locking of fan Poor connection of the motor connector Check Motor failure Check PCBA failure

Before checking PCBA or each outdoor/indoor electric parts, wait for 3 minutes after the

When measuring at standby state of power supply, after checking the measurement mode of the meter, be careful of the short-circuits with other parts.

Field failure examples


CH 21 High Current Into the Compressor (DC Peak) CH 29 Compressor input Phase Current is High


Error Code	Error Detection	Cause of Error	Check Point
CH21	High current into the compressor(DC Peak)	Over load operation (Indoor/outdoor fan constraint, screened, blocked, cycle issue)	Check Indoor/outdoor fan constraint, screened/flow structure
CH29	Compressor input phase current is high	Refrigerant leak Disconnection/shot-circuit inside compressor Compressor failure Burned parts inside PCBA(IPM failure)	Check refrigerant leakage Check compressor wire open/ short Check compressor insulation damage Check if IPM burned

Before checking PCBA or each outdoor/indoor electric parts, wait for 3 minutes after the

When measuring at standby state of power supply, after checking the measurement mode of the meter, be careful of the short-circuits with other parts.

Field failure examples

- Compressor crack

- Mis-connected the compressor wire

-When CH21 occurs, it can be determined as the faculty of the PCBA if CH21 occurs in the same way when starting up the product after removing the compressor wire connector.

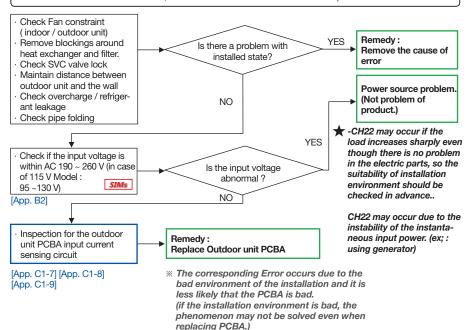
-When CH21 occurs, it can be determined as the faculty of the compressor if CH26 occurs in the same way when starting up the product after removing the compressor wire connector.

SIMs [App. B2]

Parts Replacement Procedure(Recommended)

Compressor Wire	Outdoor PCBA	Compressor
-----------------	-----------------	------------

- Compressor wire short


■ CH 22 AC input Current is Higher then the Limit

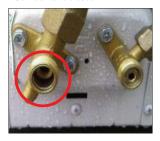
Error Code	Error Detection	Cause of Error	Check Point
CH22	Ac input current is higher than the limit.	Over load operation (outdoor fan constraint, screened, blocked) Input voltage error (low voltage) Burned parts inside PCBA	Check input voltage Check outdoor fan constraint / screened/ flow structure Check PCBA current sensor parts

Before checking PCBA or each outdoor/indoor electric parts, wait for 3 minutes after the power is off.

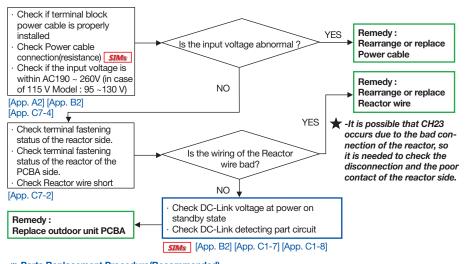
When measuring at standby state of power supply, after checking the measurement mode of the meter, be careful of the short-circuits with other parts.

Field failure examples

- Airflow to condenser is blocked (1)


- Airflow to condenser is blocked (2)

- Service valve closed


■ CH 23 DC Link Voltage Low / High

Error Code	Error Detection	Cause of Error	Check Point
CH23	DC Link Voltage Low/ High	Input voltage error(low voltage) Reactor disconnection / Bad fastening PCBA failure	Check input voltage Reactor wire abnormal/open Check PCBA DC Link voltage sensor part

Warning

Before checking PCBA or each outdoor/indoor electric parts, wait for 3 minutes after the power is off.

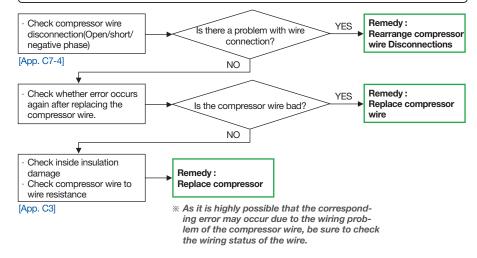
When measuring at standby state of power supply, after checking the measurement mode of the meter, be careful of the short-circuits with other parts.

*** Parts Replacement Procedure(Recommended)**

Power cable	Reactor Wire	Outdoor PCBA
-------------	--------------	--------------

Field failure examples

- Reactor wire short


■ CH 26 DC Compressor Position Error

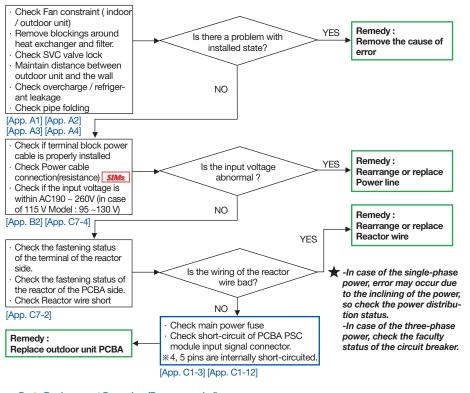
Error Code	Error Detection	Cause of Error	Check Point
CH26	DC Comp Position Error	Poor connection of compressor connector Compressor failure PCBA failure	Check compressor wire open/ short Check compressor insulation damage

Warning

Before checking PCBA or each outdoor/indoor electric parts, wait for 3 minutes after the

When measuring at standby state of power supply, after checking the measurement mode of the meter, be careful of the short-circuits with other parts.

Parts Replacement Procedure(Recommended)

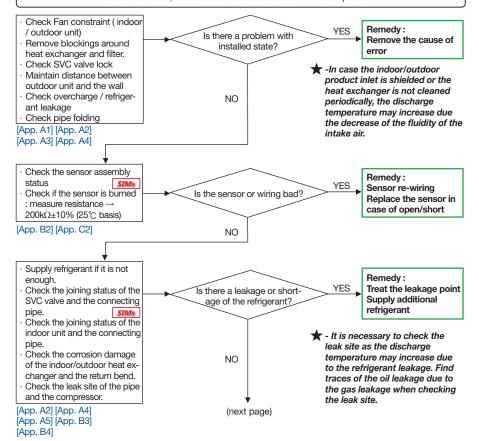

■ CH 27 PSC Fault Error

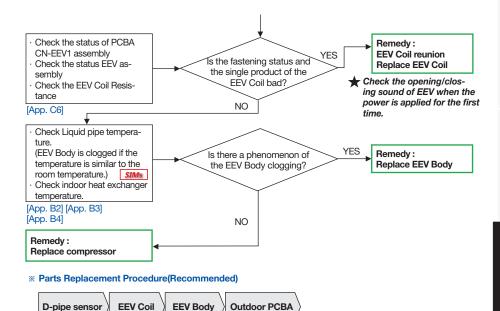
Error Code	Error Detection	Cause of Error	Check Point
CH27	PSC Fault error Over-current on AC — DC converter circuit	Overload outdoor fan constraint, screened, blocked) Bad Reactor fastening Burned PCBA internal parts (PSC module)	Check outdoor fan constraint / screened / flow structure Check whether the reactor fastening is bad Check for PCBA internal part burn

Before checking PCBA or each outdoor/indoor electric parts, wait for 3 minutes after the power is off.

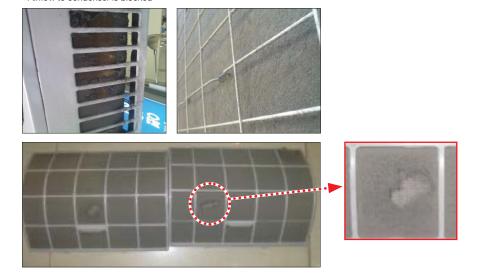
When measuring at standby state of power supply, after checking the measurement mode of the meter, be careful of the short-circuits with other parts.

**** Parts Replacement Procedure(Recommended)**


■ CH 32 High Temperature in Discharge Pipe of the Inverter Compressor

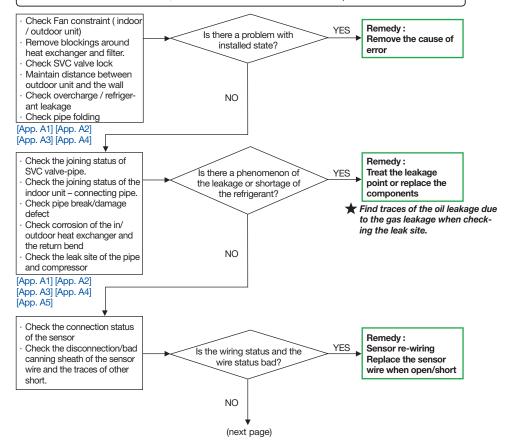

Error Code	Error Detection	Cause of Error	Check Point
CH32	High temperature in Discharge pipe of the inverter compressor	Overload operation (outdoor fan constraint, screened, blocked) Poor INV Comp Discharge sensor Refrigerant leakage (insufficient) EEV connector displaced / poor EEV assembly	Check outdoor fan constraint / screened / flow structure Check refrigerant leakage Check if the sensor is normal Check the status of EEV assembly

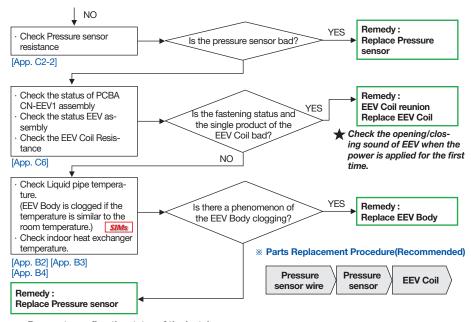
Before checking PCBA or each outdoor/indoor electric parts, wait for 3 minutes after the power is off.


When measuring at standby state of power supply, after checking the measurement mode of the meter, be careful of the short-circuits with other parts.

Field failure examples

- Airflow to condenser is blocked


CH 34 High Pressure Sensor Error (High) CH 35 Low Pressure Sensor Error (Low)

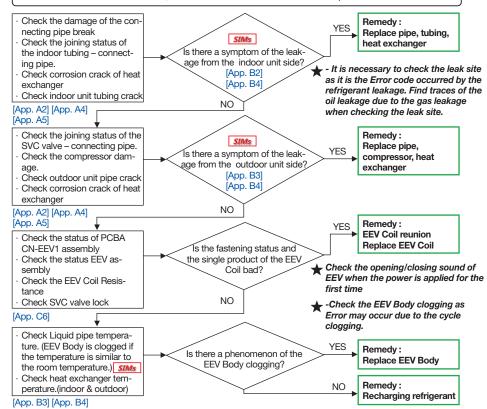

Error Code	Error Detection	Cause of Error	Check Point
CH34	High pressure sensor error (high)	Overload operation (outdoor fan constraint, screened, blocked) Refrigerant leakage (insufficient)	Check outdoor fan constraint / screened / flow structure Check refrigerant leakage
CH35	Low pressure sensor error (low)	Bad connection of the pressure sensor Bad compressor sensor Bad PCBA	Check the connection status of the compressor sensor Check resistance of the pres- sure sensor

Warning

Before checking PCBA or each outdoor/indoor electric parts, wait for 3 minutes after the power is off.

When measuring at standby state of power supply, after checking the measurement mode of the meter, be careful of the short-circuits with other parts.

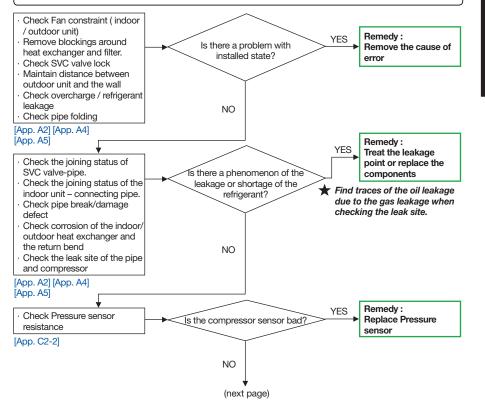
 Be sure to confirm the status of the installation environment and the sensor as the corresponding error is less likely to have PCBA problem.

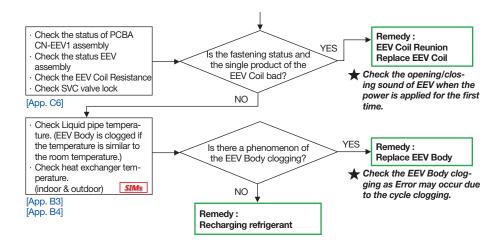

■ CH 36/38 Refrigerant Leakage Detection

Error Code	Error Detection	Cause of Error	Check Point
CH36 CH38	Refrigerant leakage detection	Pipe break damage Bad connection of the pipe Pipe damage due to the corrosion corrosion damage of the heat exchanger Compressor damage(crack) EEV body clogging Refrigerant shortage	Check the connection status of the pipe. Check the pipe break/damage faulty status Check the status of the indoor/outdoor heat exchangers Check the compressor leakage Check EEV body clogging Check proper refrigerant quantity Check the quantity of the refrigerant additionally charged

Before checking PCBA or each outdoor/indoor electric parts, wait for 3 minutes after the power is off.

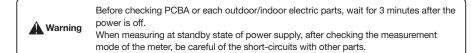
When measuring at standby state of power supply, after checking the measurement mode of the meter, be careful of the short-circuits with other parts.


■ CH 37 Failure Compressing Ratio


Error Code	Error Detection	Cause of Error	Check Point
CH37	Failure com- pressing ratio	Overload operation (outdoor fan constraint, screened, blocked) SVC valve lock Bad compressor sensor EEV connector displaced / poor EEV assembly EEV Body clogging Refrigerant leakage (insufficient) refrigerant overcharge	Check outdoor fan constraint / screened / flow structure Check SVC valve lock Check resistance of pressure sensor Check the status of EEV assembly Check EEV clogging Check refrigerant leakage 3 Check the quantity of the refrigerant.

Before checking PCBA or each outdoor/indoor electric parts, wait for 3 minutes after the power is off.

When measuring at standby state of power supply, after checking the measurement mode of the meter, be careful of the short-circuits with other parts.



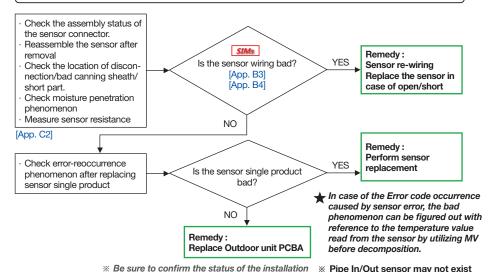
**** Parts Replacement Procedure(Recommended)**

■ CH 40 Inverter CT Sensor Open/Short

Error Code	Error Detection	Cause of Error	Check Point
CH40	Inverter CT sensor open/ short	PCBA sensing circuit part burned	_

· As CH 40 Error code phenomenon occurs due to the burn-out of the components of the outdoor unit PCBA, replace the PCBA without separate inspection.

**** Parts Replacement Procedure(Recommended)**


■ CH 41 Inverter Discharge Sensor Open / Short CH 44 Outdoor Air Temperature Open / Short CH 45/48 Outdoor Unit Pipe Sensor Open / Short CH 46 Compressor Suction Sensor Open / Short

Error Code	Error Detection	Cause of Error	Check Point
CH41	Inverter discharge temperature sensor open or short	Sensor mis-wiring/Short Moisture penetration / Bad canning sheath	Check whether the sensor connector was wired wrongly. Bad canning sheath of the
CH44	Outdoor room temperature sensor open or short		sensor wire / Short part check Sensor faulty check
CH45/48	Outdoor sensor (Outdoor heat exchanger)open or short		
CH46	Compressor suction temperature sensor open / short		

Before checking PCBA or each outdoor/indoor electric parts, wait for 3 minutes after the

When measuring at standby state of power supply, after checking the measurement mode of the meter, be careful of the short-circuits with other parts.

depending on the product, so pro-

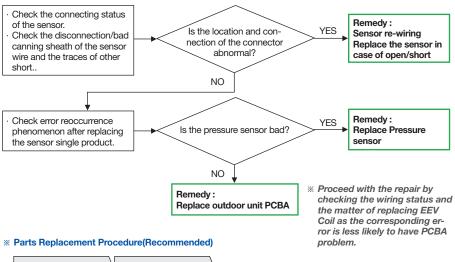
ceed the service referring to SVC

Manual.

environment and the sensor as the corresponding error is less likely to have PCBA problem.

**** Parts Replacement Procedure(Recommended)**

Temperature Sensor


CH 42 Low Pressure Sensor Open / Short CH 43 High Pressure Sensor Open / Short

Error Code	Error Detection	Cause of Error	Check Point
CH42	Low pressure Sensor open/short	Bad wiring of the pressure sensor	Check whether the sensor connector was wired wrongly.
CH43	High pressure Sensor open/short	· Bad pressure sensor	

Before checking PCBA or each outdoor/indoor electric parts, wait for 3 minutes after the

When measuring at standby state of power supply, after checking the measurement mode of the meter, be careful of the short-circuits with other parts.

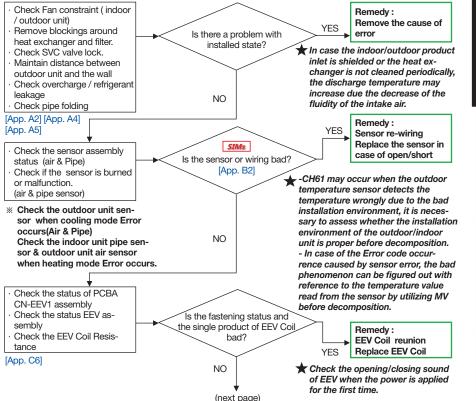
Pressure sensor wire Pressure sensor

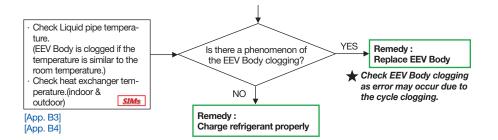
LG Electronics

■ CH 51 Excessive number of access device with over capacity

Error Code	Error Detection	Cause of Error	Check Point
CH51	Excessive number of the over-capacity access unit (Exceeds the sum of the capacity of the indoor unit)	Mis-wiring of the indoor/out- door unit	Check the matching status of the indoor/outdoor unit.

- · Case of field defect
- Wrong wiring connection during installation of large numbers of the similar model at the same site.
- · In case like this, make sure to double check that wiring connection and piping connection are connected to the same model.


■ CH 61 High Temperature in Condenser Pipe

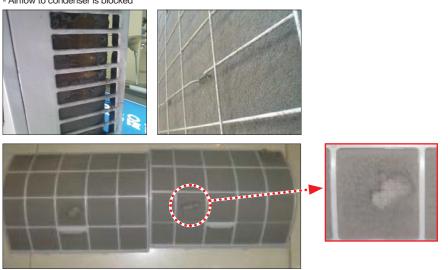

Error Code	Error Detection	Cause of Error	Check Point
CH61	High temperature in Cond. Pipe	Overload operation (Fan constraint, screened, blocked) Heat exchanger contaminated Poor Cond. pipe sensor assembly / burned EEV connector displaced/poor EEV assembly	Check fan constraint, screened, flow structure Check if refrigerant overcharged Check the status of sensor assembly / burn Check the status of EEV assembly

Before checking PCBA or each outdoor/indoor electric parts, wait for 3 minutes after the power is off

When measuring at standby state of power supply, after checking the measurement mode of the meter, be careful of the short-circuits with other parts.

**** Parts Replacement Procedure(Recommended)**

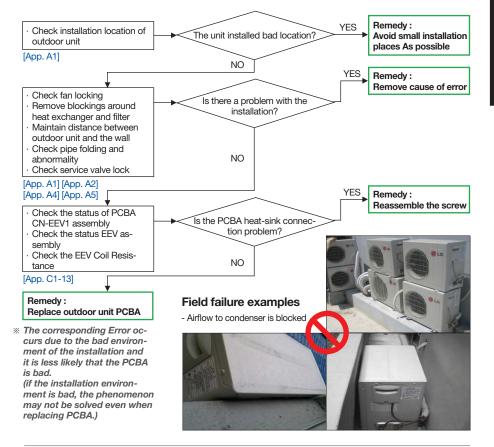
- When error occurs during cooling mode.



- When error occurs during heating mode.

Field failure examples

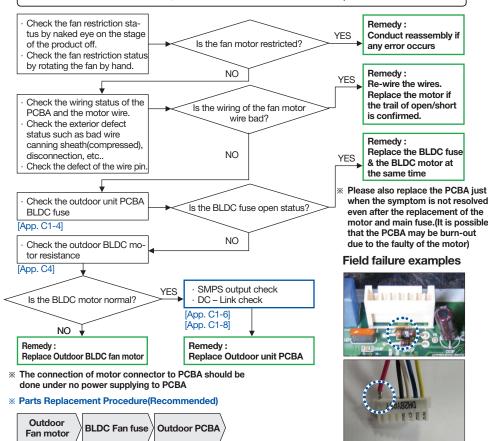
- Airflow to condenser is blocked


■ CH 62 High Temperature in Outdoor PCBA Heat Sink

Error Code	Error Detection	Cause of Error	Check Point
CH62	High tempera- ture in outdoor PCBA heat sink	Improper installation environment Overload operation (outdoor fan constraint, screened, blocked) Poor PCBA heat sink assembly Poor PCBA temperature sensing circuit parts	Check installation environment Check outdoor fan constraint / screened/ flow structure Check for the status of the PCBA heat sink connection Check PCBA temperature sensing parts

Before checking PCBA or each outdoor/indoor electric parts, wait for 3 minutes after the power is off.

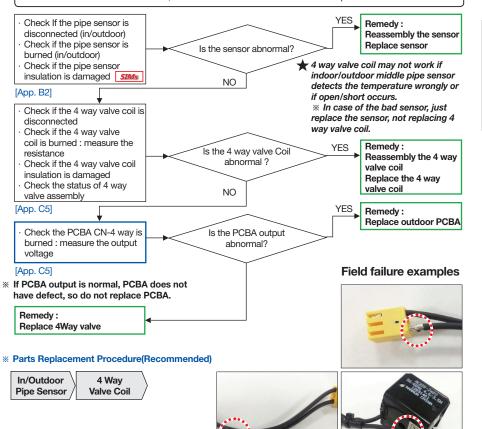
When measuring at standby state of power supply, after checking the measurement mode of the meter, be careful of the short-circuits with other parts.

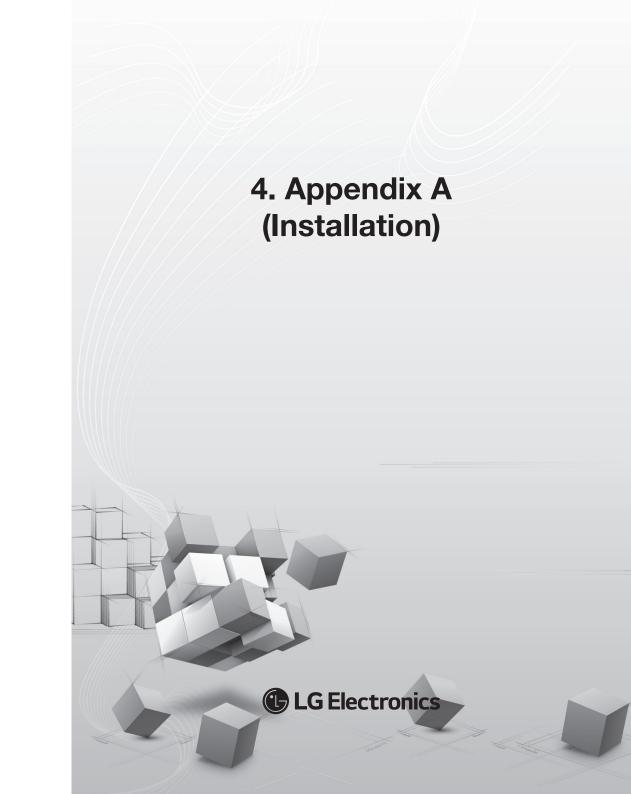

■ CH 67 Outdoor BLDC Fan Locking

Error Code	Error Detection	Cause of Error	Check Point
CH67	Outdoor BLDC fan locking (faulty motor operation)	Fan lock by physical force (foreign structure stuck in the motor) Poor connection of motor connector Motor failure PCBA failure	Structural locking of fan Poor connection of the motor connector Check motor failure Check PCBA failure

Before checking PCBA or each outdoor/indoor electric parts, wait for 3 minutes after the

When measuring at standby state of power supply, after checking the measurement mode of the meter, be careful of the short-circuits with other parts.


■ CH 72 Switching for 4 Way Valve is Failed


Error Code	Error Detection	Cause of Error	Check Point
CH72	Switching for 4 way valve is failed	Indoor/outdoor sensor short/ open Disconnection of 4 way valve connector 4 way valve open/short Burned part inside PCBA	Check sensor status (indoor/outdoor middle pipe) Check connector for 4 way valve Check 4 way valve coil resistance Check CN-4 way output voltage

Before checking PCBA or each outdoor/indoor electric parts, wait for 3 minutes after the

When measuring at standby state of power supply, after checking the measurement mode of the meter, be careful of the short-circuits with other parts.

4. Appendix A (Installation)

A1. Installation location

■ A1-1 Check indoor unit location (1)

How?

- Make sure there is no heat or steam around indoor unit.
- Make sure heat radiation from condenser is not blocked.
- Place where noise & vibration are minimum.

Why?

Reduce cooling capacity. Cause low performance. Prevent noise problem.

Indoor Unit Space Requirement:

Unit: mm

Tips:

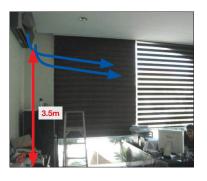
- Where inlet/outlet airflow is not blocked.
- → Low cooling performance.
- Always follow the space requirements to prevent such cases.
- Consider safety, servicing space when selecting installation place.

Case of field defect (a)

• Improper unit installation place → Difficult when servicing

■ A1-1 Check indoor unit location (2)

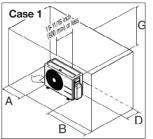
Case of field defect (b)

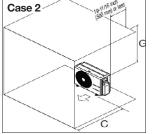

- Inlet airflow to evaporator is blocked
- → Product low cooling / heating
- → Noise might occurs

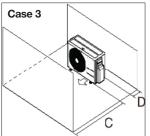
Case of field defect (c)

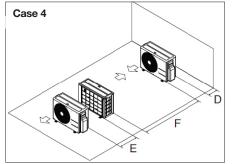
- Indoor unit is installed too high
- → Discharge air can't be fully distributed to user.
- → Low cooling / heating

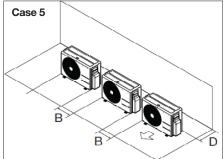
Case of field defect (d)


- · Improper unit installation place.
- → Safety issues






■ A1-2 Check outdoor unit location (1)


Outdoor Unit Space Requirement:

Unit: mm (inch)

		А	В	С	D	Е	F	G
Case1	Normal	300 (11-13/16)	700 (23-19/32)	-	300 (11-13/16)	-	-	-
Case	Min.	100 (3-15/16)	250 (9-27/32)	-	100 (3-15/16)	-	-	1000 (39-3/8)
Case2	Normal	-	-	500 (19-11/16)	-	-	-	-
Casez	Min.	-	-	- 350 (13-25/32)		-	-	1000 (39-3/8)
Casa?	Normal	-	-	500 (19-11/16)	300 (11-13/16)	-	-	-
Case3 Min.		-	-	350 (13-25/32)	100 (3-15/16)	-	-	-
Casad	Normal	-	-	-	300 (11-13/16)	600 (23-19/32)	2000 (78-3/4)	-
Case4	Min.	-	-	-	100 (3-15/16)	200 (7-7/8)	-	-
0 5	Normal	-	700 (23-19/32)	-	300 (11-13/16)	-	-	-
Case5	Min.	-	250 (9-27/32)	-	100 (3-15/16)	-	-	-


■ A1-2 Check outdoor unit location (2)

Tips:

- When installing the unit at a high place be sure to fix the unit legs. (safety precautions)
- Consider enough space for service when installing outdoor unit.
- Avoid small installation places as possible.
- Always follow the given space requirement when selecting install location.

Case of field defect (a)

- Outdoor unit is installed on top of each other without safely anchoring the unit.
- → Noise/vibration
- → Hard to service
- → Safety issues

LG Electronics

■ A1-2 Check outdoor unit location (3)

Case of field defect (b)

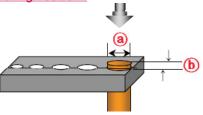
Hot discharge air will enter the unit cause a work overload and start ON/OFF system.
 → Low performance

Case of field defect (c)

- Inlet airflow to condenser is blocked
- $\,\rightarrow\,$ Operating pressure will be high and the unit may repeatedly on-off resulting low cooling/heating

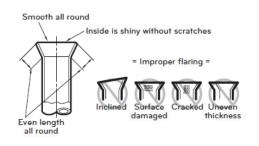
A2. Piping Work

■ A2-1 Check Piping Connection (1)


How?

- Make sure that the flare do not have any scar or dust, etc.
- Make sure to follow the given applied torque.

Why?


Prevent strange material from entering system. If applied torque is too strong, flare will get damaged.

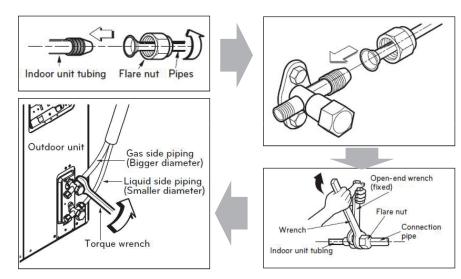
Flaring Position:

a Outside	diameter	b A	Thickness
mm	inch	mm	mm
Ø6.35	1/4"	1.1 ~ 1.3	0.7
Ø9.52	3/8"	1.5 ~ 1.7	0.8
Ø12.7	1/2"	1.6 ~ 1.8	0.8
Ø15.88	5/8"	1.6 ~ 1.8	1
Ø19.05	3/4"	1.9 ~ 2.1	1

- Checking Flare Work
- → Compare the flaring work with the figure.
- → If a flaring section is defective, cut it off and do flaring work again.

Case of field defect

Improper flaring
 → Gas leakage



■ A2-1 Check Piping Connection (2)

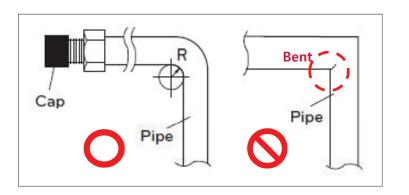
Piping connection:

- Align the center of the pipes and sufficiently tighten the flare nut by hand.
- Finally, tighten the flare nut with torque wrench until the wrench clicks.

Outside	diameter	Torque		
mm	inch	kgf·cm	N·m	
Ø6.35	1/4"	180 ~ 250	17.6 ~ 24.5	
Ø9.52	3/8"	340 ~ 420	33.3 ~ 41.2	
Ø12.7	1/2"	550 ~ 660	53.9 ~ 64.7	
Ø15.88	5/8"	630 ~ 820	61.7 ~ 80.4	
Ø19.05	3/4"	990 ~ 1210	97.0 ~ 118.6	

Case of field defect

Applied torque is too strong flare will get damaged.
 → Gas leakage



■ A2-1 Check Piping Connection (3)

Bending pipe:

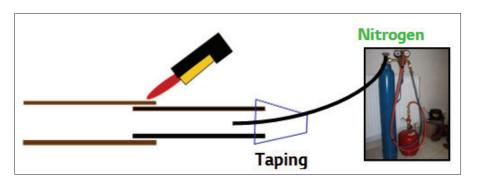
- Do not bend the pipe more than 2 times and work and work in large radius.
- If the pipe is bent, the cooling / heating capacity may deteriorate and cause a leakage problem.
- For aluminum pipe, be careful not to cause an crack on the part where the aluminum and copper are joined.

Case of field defect

- Damage during pipe bending work.
- → Clogged refrigerant cycle

■ A2-2 Check welding(brazing) work

How?


- Nitrogen should be allowed to flow without building up a pressure in the pipeline.
- Brazing requires sophisticated techniques, it must be preformed by qualified person.

Why?

Prevent from carbon scales clogging. Safety precautions and to make sure the work is done properly without any leakage.

Brazing with Nitrogen:

- Connect a nitrogen cylinder to one end of the pipe work.
- Turn on the gas and regulate the flow.
- \rightarrow 0.1 ~ 0.2 kgf/cm² (1.4 ~ 2.8 psi) · Continue the flow until the joints have cooled.

Case of field defect

- · Brazing without Nitrogen release.
- → Troubles during circulation in a cycle, like clogging EEV / Compressor / Pipe.

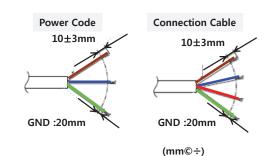
A3. Electric wiring work

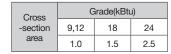
■ A3-1 Check Wire Specification

How?

Circuit **Breaker**

ELB


Power Supply


- Always follow the wiring & circuit breaker spec.
- Additional Earth Leakage Circuit Breaker for inverter product is highly recommended.

Why?

Cause abnormal heat / terminal overheating. Product earth leak detector malfunction.

Wire & Circuit Breaker Selection:

Excessive strip length → shock or leakage

×

Circuit Breaker	G	Grade(kBt	٦)
	9,12	18	24
	15	20	30
			(A)

Circuit breaker size selection (Refer to Label Quality for current value) → Normal : Running current x 1.75 Use end-terminal for

→ Inverter : Running current x 2.0

safety precautions

081

4. Appendix A (Installation)

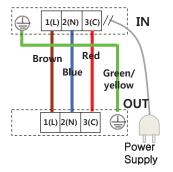
■ A3-2 Check Wiring connection (1)

How?

- Connect the wires between indoor & outdoor units so that the terminal numbers and colors are matched.
- Tighten the terminal screws securely.
- Do not extend cable connections.

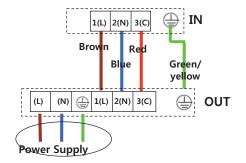
Why?

If the wires are not matched, communication error


If the connection is loosen, electric shock may occur. Extending cable will create noise or electric

Indoor Power Supplied Type

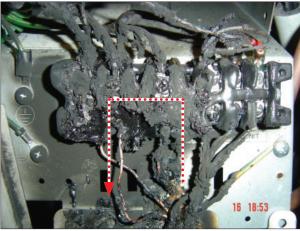
Connection cable



Outdoor Power Supplied Type

Connection cable

■ A3-2 Check Wiring connection (2)


Case of field defect (a)

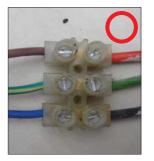
- Improper power supply wiring / absent ground wire → Heat ignition of terminal block can cause fire.
- → Electric shock

■ A3-2 Check Wiring connection (3)

Case of field defect (b)

- Improper extended wiring connection
- → Cable over heat or fire might occur
- → communication Error CH05/53 occur (operating stop)

Tips:


Extending electric wire;

1st layer of insulation:

Make sure to solder the wires to reduce the contact resistance and by using thermal contraction tube.

2nd layer of insulation:

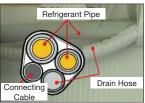
Wrap the connection with insulation tape to prevent exposure to moisture/surrounding

A4. Insulation & Drain Work

■ A4-1 Standard insulation work (1)

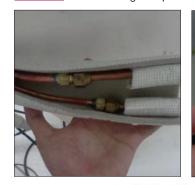
How?

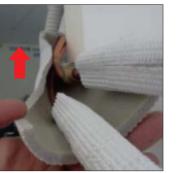
- Do the insulation after leak test is done.
- Bundle the pipe and drain hose together with vinyl tape.

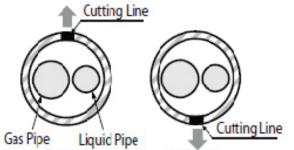

Why?

Prevent possible water leakage.

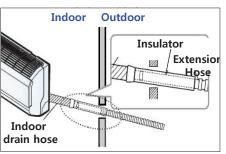
Work Process:

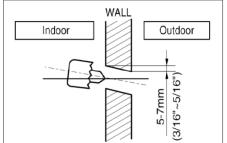

Wrap together refrigerant piping, cable and drain hose with vinyl tape.





Caution: Set the tubing line upward → prevent possible water leakage.

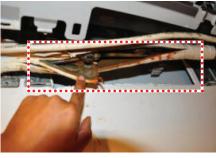




■ A4-1 Standard insulation work (2)

Tips:

- Fully insulate the connection part between indoor drain hose & extension hose.
- If not leakage may occur as the water will condensate due to temperature changes.
- Slightly slanted to outdoor side. Ensure water properly flow in downward direction.



Case of field defect:

Water leakage at pipe connection due to bad insulation.
 Mold gather at the wall.

■ A4-2 Water Leak Test (1)

How?

- Pour a water to make sure well drainage.
- Make sure the route of drainage is done properly

Why?

Prevent water leakage during operation.

If the drain hose curled, water leakage occurs.

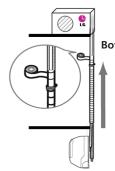
Checking Drainage:

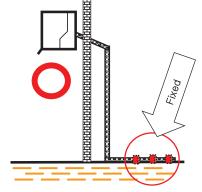
Pour a glass of water onto evaporator



Check possible leakage

Ensure water flows out the drain exit without leakage





Tips:

- The drain hose should point downward for easy drain flow
- warp the area which accommodates the refrigerant piping, electric cable, drain hose with vinyl tape in Bottom-up direction.
- Fix drain hose to prevent bending or curling
- Drain hose connection must be easy accessible & serviceable.
- For every 1 m (3 ft), fix the drain pipe with clip/tie wrap.

Wrap in the Bottom-Up direction

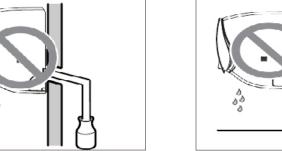
■ A4-2 Water Leak Test (2)

Case of field defect:

- Drain hose is in upward slanted direction.
- → Drain water can not flow to outdoor unit.
- Curled drain hose will block water flow.
- → Water leaks at indoor unit.
- Vinyl tape has to be wrapped from bottom to
- → Prevent possible leakage to indoor when raining.

■ A4-2 Water Leak Test (3)

Caution of Drain work:

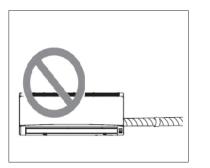

Case 1: Indoor drain hose is high more than outdoor.

Case 2: Installing without rain traps

Case 3: The end of the drain hose plugged into a bottle.

Case 4: When the end of the drain hose is locked in the sewer.

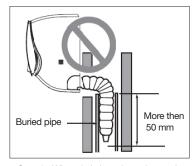
Case 5: The end of the drain hose is locked into the water.


Case 6: The end of drain hose is curled up.

089

4. Appendix A (Installation)

■ A4-2 Water Leak Test (4)


Caution of Drain work:

Case 7: When the drain hose is installed in more than 2m horizontally.

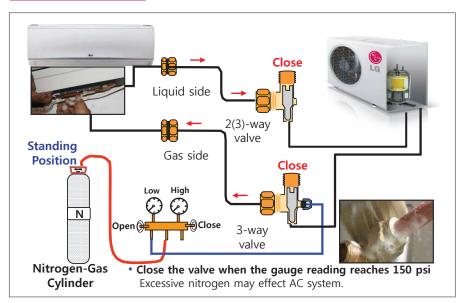
Case 8: When the end of the drain hose abuts narrow the gap with the ground.

Case 9: When drain hose is not inserted at least 50mm into the buried pipe

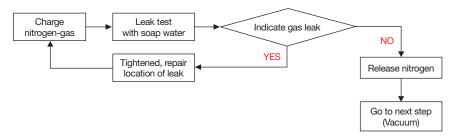
A5. Vacuum

■ A5-1 Gas Leak Test (1)

How?


- Top of nitrogen cylinder must be higher than its bottom.
- Use soap bubble to identify the location of leak. (Bubble indicates gas leak)

Why?


To avoid liquid state nitrogen from entering the system.

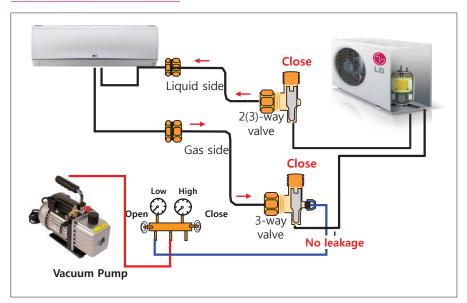
Insufficient gas will reduce the cooling capacity.

Work Process : Leak Test

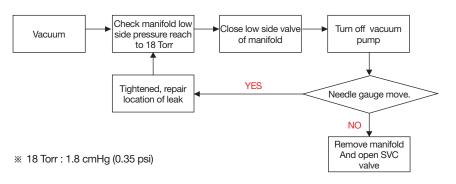
* Gas Leak Test with nitrogen Process

■ A5-2 Vacuum work process (1)

How?


- Air evacuation with vacuum pump is a must.
- Liquid and the gas side SVC valves are kept closed.

Why?


Air and moisture in system have bad effects as:

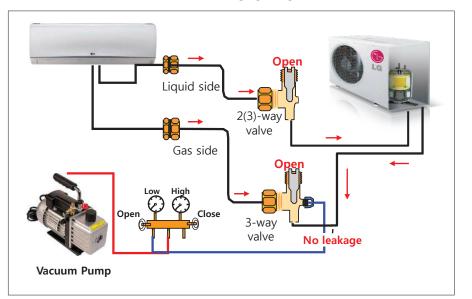
- Pressure in the system rises.
- Cooling / heating efficiency drops.

Work Process: A NEW Product

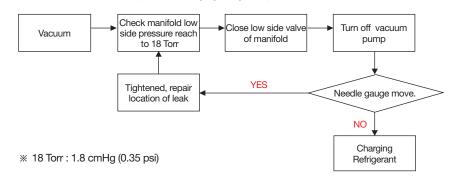
※ Vacuum work Process (A NEW Product)

■ A5-2 Vacuum work process (2)

How?


- Air evacuation with vacuum pump is a must.
- Liquid and the gas side SVC valves are must open.

Why?


Air and moisture in system have bad effects as :

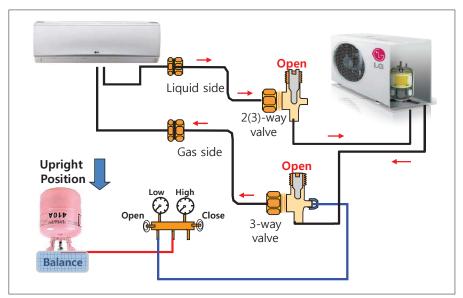
- Pressure in the system rises.
- Cooling / heating efficiency drops.

Work Process: Vacuum work when recharging refrigerant

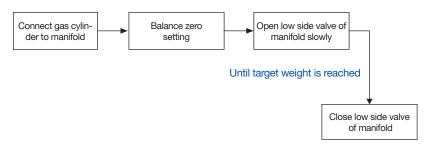
Wacuum work Process (When recharging refrigerant)

■ A5-3 Additional Charge Refrigerant

How?


- Charge in standing upright position.

Why?


Charging R410A must be liquid state for right composition

- Effect such as low cooling.

Work Process: Additional charge refrigerant

* charging work Process (when recharging refrigerant)

A6. Test Run SIMS

■ A6-1 How to operating

How?

- Press On/Off button(on the indoor product) and hold 3 ~ 6 sec.
- Press On/Off button(on the remote control) with Temp v button and
- Check operating temperature, pressure, current, voltage etc.

Why?

To enter a mode is specially designed for test run. Ensure the product work properly or not

Test Run Operating Logic:

- In this mode, regardless of the outside temperature, the unit will operate for 18 ± 1 minute in below conditions:
- Cooling mode
- Thermal On/Comp On
- Comp. fixed frequency
- Indoor fan speed high
- Vertical auto swing airflow

- Wireless remote control

- Knob switch on the indoor unit

LG Electronics

■ A6-2 Check item (1)

Check Items (a):

• Measure the temperature of the intake & discharge air.

* Ensure the difference between the intake & discharge temp. is more than 8°C (Cooling) & 14°C(Heating)


Check Items (b):

• Measure the pressure of the gas side service valve.

Ref.	Outside ambient TEMP	Pressure of the gas Side Service valve.		
R410A	35°C(95°F)	9.5 ± 3 kg/cm ² G (135 ± 43 P.S.I.G)		

* If the pressure is drop or significantly higher than specification:

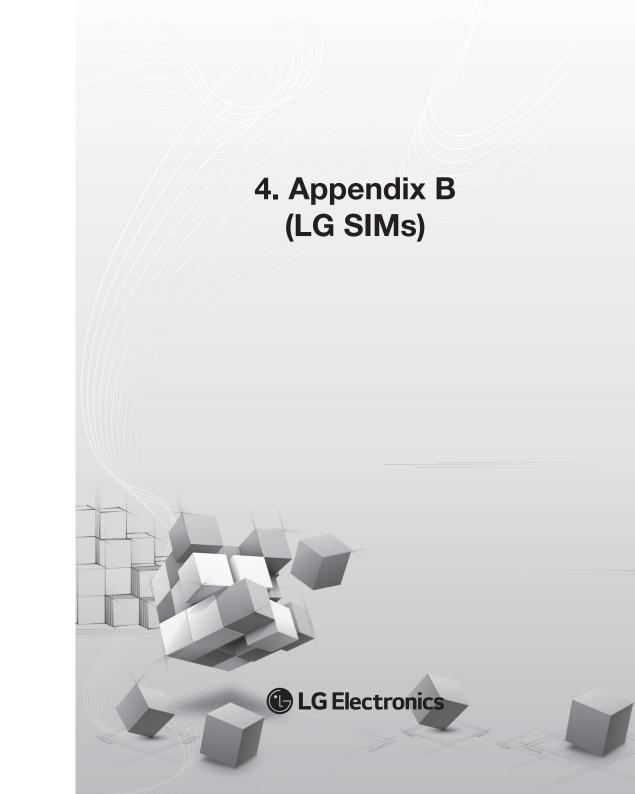
Pressure is low: Gas leakage / insufficient

Pressure is high: System is overloaded Possibility of overcharge Closed SVC valve recheck

■ A6-2 Check item (2)

Check Items (c):

• Measure the voltage & operating current. (Refer to Label Quality for specification)



* Power supply voltage/current complied with the rated value

Check Items (d):

Check Items	Symptom	
Indoor & Outdoor units are installed on solid bases.	Fall, vibration, noise	
System is properly ground to earth	Electrical leakage	
Wiring connection	Inoperative or error code 05	
Drain line is properly installed	Water leakage	

B1. How to use LG SIMs 2.0

■ B1-1 LG SIMs 2.0 (Wi-Fi)/ Specification

* If engineer use the LG SIMs for check the unit operation during Installation & SVC. So that Installer & SVC engineer can correct diagnosis

Specification

- Name: LG SIMs 2.0 (Wi-Fi)
- LG Smart phone Inverter Monitoring System
- · Accessory: SIMs Wi-Fi module
- Connection
- LG SIMs 2.0 connect with LGMV cable in ODU
- Operate LGSIMs app. in Smart phone.
- * Wi-Fi Connection Name is LGE_MV-XX-XX-XX

[SIMs 2.0 to typical DFS System]

· Operation OS

* SIMs 2.0 is not optimized for tablets.

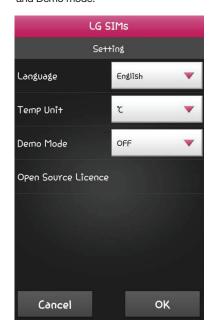
Connection

[Smart LGMV Wi-Fi Module]

Wireless communication Smart phone supporting specifications effective distance Minimum Recommended OS Resolution • Effective Distance : Specification Specification 10 m(Open area) 960x640 / 1136x640 iOS iOS 6.1 iOS 6.1 / 7.0 /8.0 • The effective distance /1334x750 / 1920x1080 may be reduced by the 480x800 / 720x1280 communication environ-Android Android 2.3 Android 4 4 /7680x1280 / 768x1024 ment /1080x1920

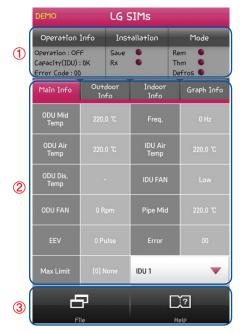
■ B1-2 LG SIMs 2.0 (Wi-Fi)/ Main Information (1)

Initial setup


[Main Info]

1 Tap the start button and SIMs2.0 will begin to scan for active Wi-Fi devices In the area. Tap the SIMs2.0 Wi-Fi nave in the list to connect to the Wi-Fi module. Press the OK button and the main info screen

display.



2 The setting screen displays. You can make selections for language, unit and Demo mode.

■ B1-2 LG SIMs 2.0 (Wi-Fi)/ Main Information (2)

After the Wi-Fi is being connected, while the Main Info is displayed

[Main Info]

1 Operation information

Item	Description
Operation	ODU operating mode : Cooling / Heating / Fan / Off
Capacity(IDU)	Capacity of the selected indoor unit
Error Code : XX	Current AC system error (If any)
Save	Not used
Rx	When lit, indicates an active wireless connection
Rem	Remote controller is on when lit
Thm	Thermo on when lit
Defrost	System in defrost mode when lit

2 Cycle information (on main info tab)

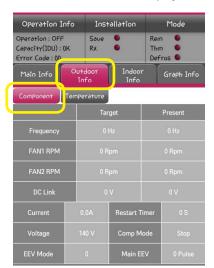
Item	Description
ODU Mid Temp	Outdoor heat exchanger pipe mid. temperature
ODU Air Temp	Outdoor temperature
DOU Dis. Temp	Outdoor unit compressor discharge temperature
ODU FAN	Outdoor unit fan speed in RPM
EEV	Electromnic expansion valve
Max Limit	Inverter compressor frequency resriction
Freq.	Outdoor unit compresspor frequency
IDU Air Temp	Indoor temperature
IDU FAN	Indoor unit wind amount
Pipe Mid	Indoor heat exchanger Pipe mid. Temperature
Error	Error Code
IDU 1	Indoor unit 1. Tap to display list of all indoor units. The data SIMs displays is for the indoor unit selected by this button.

3 Help menu

Item	Description
File	Save current cycle data by this button(save only). The contents of files can be accessed by the Factory user.
Help	Tap to display trouble shooting guide

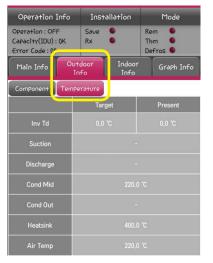
■ B1-2 LG SIMs 2.0 (Wi-Fi)/ Main Information (3)

DEMO		LG S	LG SIMs			
Operation	Installation		Mo	Mode		
Operation : OF Capacity(IDU) Error Code : 00	Save Rx	•	Rem Thm Defros			
Main Info	Out:		Indoor Info	Gra	Ph Info	
ODU Mid Temp			Freq.			
ODU Air Temp			IDU Air Temp	22		
ODU Dis. Temp			IDU FAN	3		
ODU FAN			Pipe Mid	22		
EEV			Error		00	
Max Limit	[0] None		ามัน 1	•••	•	
Æ	7			<u> </u>		
F	le		1	Help		

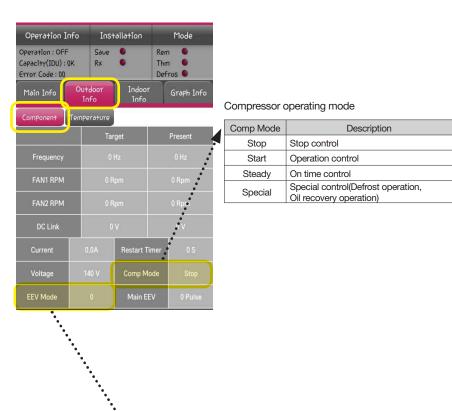

Max Limit(Protection mode)

Specific wording is displayed in accordance with the operation mode of the product. It means that the protection logic, by which the system operates in the safe range according to the ambient temperature condition and environmental condition, is operating. It is not a failure. The type of the system protection is listed in the following table.

Max. Limit	Description
Tc Limit	Cooling : Outdoor HEX temperature protection mode Heating : Indoor HEX temperature protection mode
Te Limit	Indoor HEX temperature protection mode
Td Limit	Compressor out temperature protection mode
Current Limit	Current protection mode
H/S Limit	Heat-sink temperature protection mode
Air Temp	System protection mode in accordance with the outdoor temperature
Voltage Limit	Voltage protection mode
Dew Limit	Indoor unit Anti-dew protection in operation
Quiet Mode Limit	Quiet mode in operation
Sleep Limit	Sleep mode in operation
Dehumidify Limit	Dehumidification mode in operation


■ B1-3 LG SIMs 2.0 (Wi-Fi)/ Outdoor Information (1)

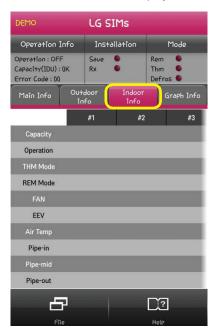
Outdoor Unit Information Display


Tap the outdoor info tap to display ODU information. The outdoor info tab has two sub-display, Component and Temperature. Tap the desired on to display its data.

Item	Description
Frequency	Target and present inverter coompressor frequency
Fan1 RPM	Target and present fan 1 speed
Fan2 RPM	Target and present fan 2 speed
DC Link	Target and present DC Link voltage
Current	Input current
Voltage	Input voltage
EEV Mode	EEV operation mode
Restart Timer	restart timer
Comp Mode	Compressor operation status
Main EEV	Electronic expansion valve pulse

Item	Description
Inv Td	Target and oresent out temperature
Suction	Compressor in temperature
Discharge	Compressor out temperature
Cond Mid	Heat exchanger pipe mid. temperature
Cond Out	Heat exchanger pipe outlet temperature
Heatsink	Heat sink temperature
Air temp	Outdoor temperature

■ B1-3 LG SIMs 2.0 (Wi-Fi)/ Outdoor Information (2)

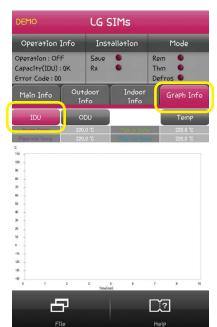


EEV operating mode

EEV Mode	Description
0	EEV Power apply initialization control
1	EEV Start-up initialization control
2	EEV Start-up control mode 1
3	EEV Start-up control mode 2
4	EEV On time control
5	EEV Stop control

■ B1-4 LG SIMs 2.0 (Wi-Fi)/ Indoor Information

Indoor Unit Information Display



Tap the indoor info tap to display IDU information. Tap the number of the IDU you want to display (#1, #2, etc.). Swipe the number list to the left to display any additional IDU numbers.

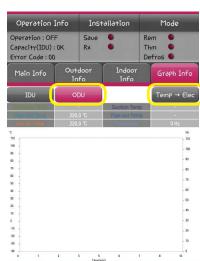
Item	Description
Capacity	Indoor unit capacity
Operation	Indoor unit operating mode (cooling/ heating)
THM Mode	Thermo on/off
REM Mode	Remote controller on/off
FAN	Fan speed in RPM
EEV	Electronic expansion valve
Air Temp	Indoor temperature
Pipe-in	Heat exchanger pipe inlet temperature
Pipe-mid.	Heat exchanger pipe mid. temperature
Pipe-out	Heat exchanger pipe outlet temperature

■ B1-5 LG SIMs 2.0 (Wi-Fi)/ Graph(Temp & Electronic)

Graph monitoring (IDU Temp)

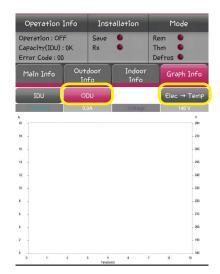
Tap the graph info tab and then tap the IDU tab to display IDU information in graph format. Information displayed is for the IDU # selected on the Main screen. You can "pinch" the screen in and out to change the time scale to display data for a longer or shorter data collection period.

Item	Description
Room Temp	Indoor temperature
Pipe mid. Temp	Heat exchanger pipe mid. temperature
Pipe in Temp	Heat exchanger pipe inlet temperature
Pipe out Temp	Heat exchanger pipe outlet temperature


Allow SIMs to run for 30 to 60 minutes to acquire enough data to show system operating trends.

104 TROUBLE SHOOTING GUIDE BOOK

LG Electronics 105


■ B1-5 LG SIMs 2.0 (Wi-Fi) / Graph (Temp & Electronic)

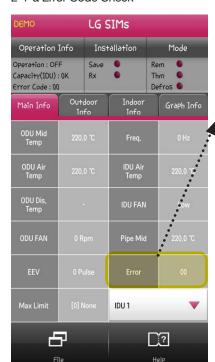
Graph monitoring (ODU Temp & Freq.)

Tap the graph info tab and then tap the ODU tab to display ODU information in graph format. Tap the Temp → Elec. tab / Elec. → Temp tab to switch between ODU temperature and electric data. You can "pinch" the screen in and out to change the time scale to display data for a longer or shorter data collection period.

Item	Description
Discharge Temp	Compressor discharge temperature
Pipe mid. Temp	Outdoor heat exchanger pipe mid. temperature
Out air Temp	Outdoor air temperature
Suction Temp	Compressor inlet temperature
Pipe out Temp	Outdoor heat exchanger outlet temperatuer
Frequency	Compressor frequency

Allow SIMs to run for 30 to 60 minutes to acquire enough data to show system operating trends.

Item	Description
Current	Outdoor unit current
Voltage	Outdoor unit voltage

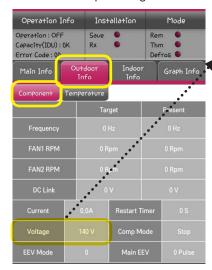

B2. Basic Checking Guide

■ B2-1 Power Apply Check (1)

* After installing SIMs 2.0 Module to the product, apply power.

The malfunction of the product may occur without specific Error code Message if the characteristics failure of the electric components happens. By utilizing SIMs 2.0 Module, you can check the operation characteristics of the core electric components in real time and find Service point.

2-1-a Error Code Check

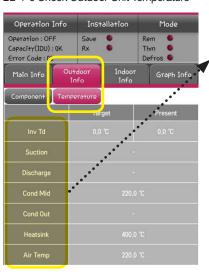


By using SIMs 2.0 Module, the sensor problem due to the characteristics failure as well as Error Code due to the sensor failure can be detected.

- Make sure whether the Error Code is recognized on the Error section at the bottom side of the screen of the SIMs main Info tab.
- When Error Code occurs, proceed with SVC referring to the corresponding Error Code Trouble shooting guide.

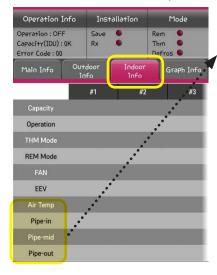
■ B2-1 Power Apply Check (2)

B2-1-b Check input Voltage



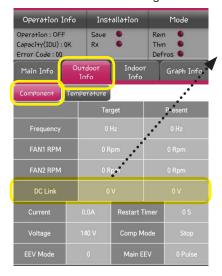
 Shift to Outdoor info tab and check the voltage status.

In case Input pressure is different with the product Spec.

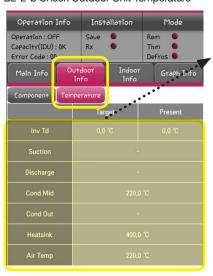

- Verify the applied voltage of the external power supply
 Request electric work if the external power supply is faulty
- Check whether the Multi-tap(surge protector, power strip) is used → In case Multi-tap(surge protector, power strip) is used, there is a possibility in malfunction due to the instantaneous over current and over capacity
- Bad power Line wiring

B2-1-c Check Outdoor Unit Temperature

- Shift to Temperature tap and verify whether the temperature of the outdoor temperature sensor stays within the normal range.
- In case the characteristics failure of the temperature sensor occurs, it does Sensing more than 10 high or low compared to the indoor/outdoor temperature.
- Provided, as the sensing temperature can vary due to the residual heat of the product inside according to the operation mode of the product before inspection, verify after 2hours elapse from the product Off.
- ※ In case of the on-site service, if the product is under the operation or if the product was off within 2 hours, follow B2-2 product operation Check guide.
- » If the corresponding temperature information can not be checked(in case it is displayed as" - "), judge it as Open/ Short and proceed with SVC.
- As there exists some product not equipped with the specific sensor for each product, verify the SVC Manual of the served product and judge it.


B2-1-d Check Indoor Unit Temperature

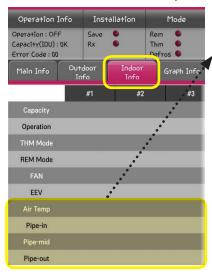
- Shift to Indoor tap and verify whether the temperature of the indoor temperature sensor stays within the normal range.
- In case the characteristics failure of the temperature sensor occurs, it does Sensing more than 10 high or low compared to the indoor/outdoor temperature.
- Provided, as the sensing temperature can vary due to the residual heat of the product inside according to the operation mode of the product before inspection, verify after 1hour elapse from the product Off.
- ※ In case of the on-site service, if the product is under the operation or if the product was off within 2 hours, follow B2-2 product operation Check guide.
 (For fast convergence of the temperature of the indoor unit, perform inspection 1 hour after operating blower mode for 15minutes after product shutdown.)
- If the corresponding temperature information can not be checked(in case it is displayed as" _"), judge it as Open/ Short and proceed with SVC.
- As there exists some product not equipped with the specific sensor for each product, verify the SVC Manual of the served product and judge it.


■ B2-2 Product operation Check

B2-2-a Check DC Link Voltage

- Shift to Outdoor tap and check the status of the DC Link voltage.
- If the DC Link voltage is lower or higher than the Target, malfunction symptom may occur, so it needs confirmation.
- If DC Link problem occurs, shift to Error Code CH23 Page and follow the measures.

B2-2-b Check Outdoor Unit Temperature

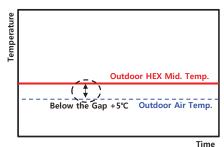

- Shift to Outdoor tap and verify whether the temperature of the outdoor temperature sensor stays within the normal range.
- For the determination of normal cycle, refer to the App. Reference Temperature table.

(Sensing temperature of the product varies according to the temperature condition of each outdoor air temperature. Therefore, the standard temperature based on the outdoor/indoor temperature condition is needed in order to determine the normality of the product operation cycle.)

** The sensing temperature in the initial start-up product shows rapid change(Ramp up), it is difficult to judge for the normal(Steady) Cycle.

Therefore, in case of the product operation, judge for the sensing temperature after around 20 minutes considering the stabilization period.

B2-2-c Check Outdoor Unit Temperature

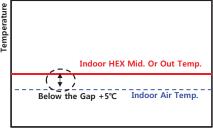

- Shift to outdoor tap and verify whether the temperature of the outdoor temperature sensor stays within the normal range.
- For the determination of normal cycle, refer to the App. Reference Temperature table (Sensing temperature of the product varies according to the temperature condition of each outdoor air temperature. Therefore, the standard temperature based on the outdoor/indoor temperature condition is needed in order to determine the normality of the product operation cycle.)
- ** The sensing temperature in the initial start-up product shows rapid change(Ramp up), it is difficult to judge for the normal(Steady) Cycle.
- Therefore, in case of the product operation, judge for the sensing temperature after around 20 minutes considering the stabilization period.

LG Electronics

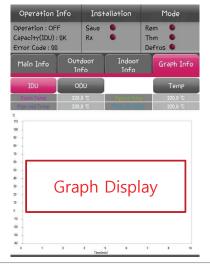
B3. Abnormal Case Guide

■ B3-1 No refrigerant / Bad location of the sensor

* Guide was made based on the Cooling mode, and Heating mode can be detected with the same principle.

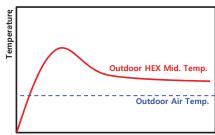

 In case the temperature data of the SIMs graph is similar to the shape of the left graph, there is a possibility in no refrigerant, so leak test should be done.

 When outdoor heat exchanger temperature(ODU MID TEMP) is constantly kept within the gap difference of 'Below +5°C' with outdoor temperature(ODU AIR)

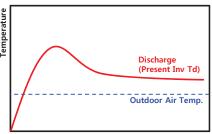

 When indoor heat exchanger temperature(IDU PIPE TEMP) is constantly kept within the gap difference of 'Below +5°C' with indoor temperature(IDU AIR)

 If above 2 cases are satisfied at the same time, judge that there is no refrigerant inside of the product and perform SVC.

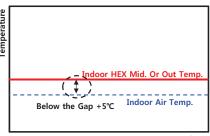
 If the grape shape of the specific temperature sensor is same to the left, check the position of the sensor(Bad location/Removed)



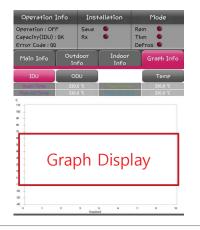
Time



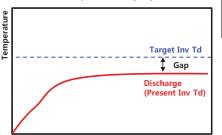
■ B3-2 Cycle Block (EEV, SVC Valve closed)


** Guide was made based on the Cooling mode, and Heating mode can be detected with the same principle.

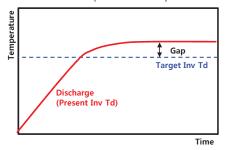
Time



Time


Time

- In case the temperature data on the SIMs graph is similar to the shape of the left graph, Cycle clogging is suspected, so SVC Valve Lock should be checked.
- When outdoor heat exchanger temperature(ODU MID TEMP) approaches the outdoor temperature(ODU AIR) by gradual decrease after increase
- When compressor discharge temperature approaches the outdoor temperature(ODU AIR) by gradual decrease after increase
- When indoor heat exchanger temperature(IDU PIPE TEMP) is constantly kept within the gap difference of 'Below +5°C' with indoor temperature(IDU AIR)
- If above 3 cases are satisfied at the same time, judge that there is no refrigerant inside of the product and perform SVC.
- ※ In case of the outdoor temperature sensor graph, it can occur as a phenomenon of the normal control under the condition that Compressor Frequency is changing.



■ B3-3 Cycle Block (No action of EEV) / Bad location of Td sensor

• No action of EEV(too much open)

· No action of EEV (too much close)

- In case the temperature data on the SIMs graph is similar to the shape of the left graph, judge it as 'No action of EEV' or 'Bad location of Td sensor'.
- When the compressor discharge temperature becomes stabilized under that state of not reaching Target Inv Td (Gap occurs over than 10°C)
- If it is not operated under the state that EEV opening is opened a lot, the same phenomenon may occur.
- * If the location of Td sensor is faulty(Removed/Inserted wrongly), the same phenomenon may occur.
- When the compressor discharge temperature becomes stabilized under that state of exceeding Target Inv Td (Gap occurs over than 10°C)
- * If it is not operated under the state that EEV opening is opened a little, the same phenomenon may occur.

 Abnormal fastening state of EEV Coil

 Abnormal fastening state of Td sensor

■ B4. Reference Cycle Temperature Table

■ B4-1. Cooling Mode

Determine the normal temperature range referring to the Reference Cycle data for each indoor/ outdoor temperature condition.

* Under the cooling operation mode, Inv.Td should always higher than the temperature of the outdoor pipe. IF Inv.Td temperature is same or lower than the outdoor pipe temperature, the confirmation for the sensor insertion faulty/characteristics faulty is required.

B4-1-a Standard Cooling Temperature: Indoor 27 °C (81 °F)/ Outdoor 35 °C (95 °F) Remote Control Setting: 18°C (34°F) / High

		Billion		Indoor		Outdoor								
Capacity	+1	Pipe Length	°C (°F)					°C (°F)			kgf/cm² (psi)			
(B.T.U)	Tool	(m/ft)	HEX In	HEX Mid.	HEX Out	Suction	INV Td	HEX In	HEX Mid.	HEX Out	Pressure High	Pressure Low		
9k	UA3		9.5 (49)	8.9 (48)	10 (50)	10.2 (50)	79.4 (175)	76.4 (170)	49 (120)	40.3 (105)	30.8 (437)	8.3 (118)		
101.	UA3		10.3 (51)	9.4 (49)	9.1 (48)	8.1 (47)	79.2 (175)	74.6 (166)	47.9 (118)	39.1 (102)	32.3 (459)	8.0 (114)		
12k	UL2		9.9 (50)	8.9 (48)	9.3 (49)	8.6 (48)	77.5 (172)	71.9 (161)	45.9 (115)	39 (102)	28.9 (411)	7.8 (111)		
101	UL2	7.5(24.6)	10 (50)	10 (50)	11.5 (53)	11.7 (53)	77.8 (172)	74.9 (166)	49.5 (121)	42.1 (108)	30.6 (435)	8.8 (125)		
18k	UE	A. 10 T.	8.7 (48)	9.3 (49)	9.8 (50)	8.8 (48)	75.2 (167)	73.3 (164)	47.2 (117)	40.1 (104)	27.8 (395)	9.3 (133)		
24k -	UE		7.7 (46)	7.7 (46)	9.5 (49)	7.3 (45)	80.3 (177)	75.6 (168)	50.1 (122)	40.5 (105)	30.1 (428)	9.0 (128)		
	UE1+		8.5 (47)	7.7 (46)	7.8 (46)	8.3 (47)	77.9 (172)	72 (162)	49.4 (121)	41.0 (106)	31 (440)	7.8 (111)		

X Cycle Judgment Tolerance

Indoor HEX Temp. : 10(50) ± 5(9) °C (°F) Outdoor HEX In: 74(165) ± 15(27) °C (°F) Outdoor HEX Mid.: 48(118) ± 10(18) °C (°F)

Outdoor HEX Out : 40(104) ± 10(18) °C (°F)

Suction: More then 2(35) °C (°F) Inv Td : 78(172) ± 15(27) °C (°F)

Pressure Low: $8.5(120) \pm 3(43) \text{ kg/cm}^2 \text{ (psi)}$

B4-1-b Cooling Overload Temperature: Indoor 32 °C (90 °F)/ Outdoor 48 °C (118 °F) Remote Control Setting: 18°C (34°F) / High

		D:		Indoor		Outdoor							
Capacity	Tool	Pipe	°C (°F)					kgf/cm² (psi)					
(B.T.U)	1001	Length (m/ft)	HEX In	HEX Mid.	HEX Out	Suction	INV Td	HEX In	HEX Mid.	HEX Out	Pressure High	Pressure Low	
ol.	1142	7.5(24.6)	18.5 65)	18.9 (66)	17.9 (64)	16.8 (62)	79.7 (175)	76.7 (170)	58.9 (138)	56.2 (133)	38.3 (544)	12.3 (175)	
9k UA3	UA3	20(65.6)	19.7 (66)	19.1 (66)	19.0 (66	17.3 (63)	76.3 (169)	70.7 (159)	57.1 (135)	55.4 (132)	39.5 (561)	12.2 (173)	
	UA3	7.5(24.6)	18.3 (65)	19 (66)	17.8 (64)	18.6 (65)	79.3 (175)	71.9 (161)	55.1 (131)	53.4 (128)	37.3 (530)	11.9 (169)	
101	UAS	20(65.6)	18.8 (66	19.1 (66)	18.8 (66)	17.3 (63)	76.3 (169)	69.7 (157)	57.1 (135)	53.7 (129)	38.5 (547)	11.9 (169)	
12k	UL2	7.5(24.6)	16.3 (61)	17.3 (63)	17.9 (64)	23.9 (75)	87.5 (190)	82.2 (180)	55.5 (132)	51.5 (125)	35.6 (506)	11.2 (159)	
		20(65.6)	18.2 (65)	18.4 (65)	19.3 (67)	20.9 (70)	82.4 (180)	77.2 (171)	54.8 (131)	52.4 (126)	35.7 (507)	11.8 (168)	
	UL2	7.5(24.6)	18 (64)	18.4 (65)	19.5 (67)	22.8 (73)	87.9 (190)	81.2 (178)	57.4 (135)	55.3 (132)	36.1 (513)	11.9 (169)	
101	ULZ	20(65.6)	18.6 (65)	18.4 (65)	19.8 (68)	16.8 (62)	84.4 (184)	76.1 (169)	55.4 (132)	52.1 (126)	38.4 (545)	12.3 (175)	
18k	UE	7.5(24.6)	16 (61)	18.2 (65)	16.7 (62)	15.9 (61)	84.7 (184)	78.9 (174)	57.5 (136)	54.5 (130)	37.7 (535)	11.2 (159)	
	UE	30(98.4)	17.9 (64)	18.3 (65)	18.3 (65)	15.3 (60)	82 (180)	77.1 (171)	56.6 (134)	53.4 (128)	32.2 (457)	13.9 (197)	
	UE	7.5(24.6)	17.6 (64)	19.8 (68)	17.8 (64)	19.8 (68)	84.4 (184)	81.2 (178)	57.3 (135)	54.5 (130)	37.3 (430)	12.0 (170)	
241	UE	30(98.4)	17.6 (64)	18.1 (65)	18.5 (65)	16.0 (61)	82.6 (181)	75.9 (169)	56.8 (134)	52 (126)	37.9 (538)	11.9 (169)	
24k	1101	7.5(24.6)	16.1 (61)	16.5 (62)	17.1 (63)	17.5 (64)	81.8 (179)	77.4 (171)	57.4 (135)	53.6 (128)	36.5 (518)	10.8 (153)	
	UE1+	30(98.4)	16.7 (62)	17.4 (63)	17.1 (63)	18.9 (66)	81.5 (179)	72.5 (163)	58.1 (137)	50.6 (123)	36.9 (524)	11.2 (159)	

X Cycle Judgment Tolerance

Indoor HEX Temp. : 18(64) \pm 5(9) $^{\circ}$ C ($^{\circ}$ F) Outdoor HEX In: 74(165) ± 15(27) °C (°F) Outdoor HEX Mid.: 57(135) ± 10(18) °C (°F) Outdoor HEX Out : 40(130) ± 10(18) °C (°F)

Suction: More then 12(54) °C (°F) Inv Td : 78(172) ± 15(27) °C (°F)

Pressure Low: $12(171) \pm 3(43) \text{ kg/cm}^2 \text{ (psi)}$

B4-1-c Cooling Low Temperature : Indoor 21 °C (70 °F)/ Outdoor 21 °C (70 °F) Remote Control Setting : 18°C (34 °F) / Low

		4000		Indoor					Outdoor			
Capacity	+1	Pipe		°C (°F)				kgf/cm² (psi)				
(B.T.U)	Tool	Length (m/ft)	HEX In	HEX Mid.	HEX Out	Suction	INV Td	HEX In	HEX Mid.	HEX Out	Pressure High	Pressure Low
9k	UA3	7.5(24.6)	3.5 (38)	3.2 (38)	2.7 (37)	1.4 (34)	40 (104)	35.3 (96)	29.3 (85)	27.6 (82)	18.5 (263)	7.4 (105)
9K	UA3	20(65.6)	3.1 (38)	3.3 (38)	2.5 (36)	-0.8 (31)	37.2 (99)	31.5 (89)	30.6 (87)	26.7 (80)	20.5 (286)	7.1 (101)
	UA3	7.5(24.6)	4.6 (40)	4.4 (40)	5.6 (42)	5.6 (42)	44 (111)	38.4 (101)	28.2 (83)	23.5 (74)	18.1 (257)	7.7 (109)
101		20(65.6)	5 (41)	5.3 (41)	5.9 (43)	2.9 (37)	42.9 (109)	37.7 (100)	30.1 (86)	24.3 (76)	18.3 (260)	7.7 (110)
12k	UL2	7.5(24.6)	4.1 (39)	4.3 (40)	5.5 (42)	5.9 (43)	42.7 (109)	36.9 (98)	27.4 (81)	23.4 (74)	17.6 (251)	7.6 (108)
		20(65.6)	4.9 (41)	5.3 (42)	6 (43)	3.2 (38)	43.2 (110)	38.1 (101)	28.1 (83)	24.6 (76)	17.7 (252)	7.7 (110)
18k	UL2	7.5(24.6)	6.3 (43)	5.8 (42)	6.8 (44)	6.5 (44)	47.4 (117)	40.2 (104)	30 (86)	27.9 (82)	19.5 (276)	8.0 (114)
18K	ULZ	20(65.6)	5.7 (42)	7.1 (45)	7.1 (45)	4.3 (40)	44.9 (113)	42.5 (109)	30.7 (87)	25.1 (77)	20.9 (297)	7.6 108)
	UE	7.5(24.6)	4.9 (41)	4.7 (40)	6.4 (43)	5.7 (42)	48.3 (119)	42 (108)	31.6 (89)	25.5 (78)	19.9 (283)	7.7 (110)
	UE	30(98.4)	4.6 (40)	4.7 (40)	4.9 (41)	3.0 (37)	44.7 (113)	38.5 (101)	29.6 (85)	23.1 (74)	20.6 (292)	7.7 (110)
24k	LIE4.	7.5(24.6)	6.3 (43)	6.7 (44)	9.2 (49)	11.1 (52)	47.1 (117)	40.7 (105)	27.9 (82)	22.4 (72)	17.6 (250)	8.4 (119)
	UE1+	30(98.4)	5.7 (42)	6.1 (43)	7.6 (46)	11.1 (52)	48.8 (120)	38.9 (102)	28.3 (83)	22.5 (73)	17.7 (252)	8.1 (114)

*** Cycle Judgment Tolerance**

Indoor HEX Temp. : More then 0(32) °C (°F) Outdoor HEX In : $38(100) \pm 15(27)$ °C (°F) Outdoor HEX Mid. : $32(90) \pm 10(18)$ °C (°F) Outdoor HEX Out : $32(90) \pm 10(18)$ °C (°F)

Suction: 6(43) ± 9(16) °C (°F) Inv Td: 44(111) ± 15(27) °C (°F)

Pressure Low: $8(114) \pm 3(43) \text{ kg/cm}^2 \text{ (psi)}$

■ B4-2. Heating Mode

Determine the normal temperature range referring to the Reference Cycle data for each indoor/outdoor temperature condition

W Under the heating operation mode, Inv.Td should always higher than the temperature of the indoor pipe. IF Inv.Td temperature is same or lower than the indoor pipe temperature, the confirmation for the sensor insertion faulty/characteristics faulty is required.

B4-2-a Standard Heating Temperature : Indoor 20 °C (68 °F)/ Outdoor 7 °C (45 °F) Remote Control Setting : 30°C (86 °F) / High

		av .		Indoor		Outdoor								
Capacity	Tool	Pipe	°C (°F)						kgf/cm² (psi)					
(B.T.U)	1001	Length (m/ft)	HEX In	HEX Mid.	HEX Out	Suction	INV Td	HEX In	HEX Mid.	HEX Out	Pressure High	Pressure Low		
9k	UA3	75/21/0	59.7 (139)	44.4 (112)	41.5 (107)	1.4 (34)	70.2 (158)	1.6 (35)	0.7 (33)	2.1 (36)	28.4 (404)	6.7 (95)		
12k	UA3		57.6 (136)	46.6 (116)	43.3 (110)	-0.2 (32)	72.5 (162)	1.4 (35)	1 (34)	0.9 (34)	31.2 (444)	6.8 (96)		
12K	UL2		62.1 (144)	48.5 (119)	40.5 (105)	0.5 (33)	73 (163)	2.2 (36)	1.3 (34)	1.8 (35)	30.7 (436)	6.9 (98)		
18k	UL2	7.5(24.6)	63.9 (147)	44.4 (112)	39.6 (103)	0.9 (34)	74.4 (166)	1.2 (34)	0.7 (33)	1.5 (35)	28.4 (403)	6.7 (94)		
24k	UE		65.1 (149)	48.9 (120)	43.8 (111)	-1.3 (30)	74 (165)	1 (34)	0.9 (34)	1.5 (35)	29.7 (422)	7.6 (108)		
	UE1+		68.8 (156)	51.0 (124)	43.7 (111)	-0.8 (31)	73.9 (165)	3.3 (38)	1.4 (35)	1.4 (34)	33.1 (470)	6.5 (93)		

X Cycle Judgment Tolerance

Indoor HEX Mid. : 47(117) \pm 10(18) °C (°F) Pressure Low : 7(100) \pm 3(43) kg/cm² (psi)

Indoor HEX Out: 42(108) ± 10(18) °C (°F)

B4-2-b Heating Overload Temperature: Indoor 27 °C (81 °F)/ Outdoor 24 °C (75 °F) Remote Control Setting: 30°C (86 °F) / Low

		Disc.		Indoor		Outdoor								
Capacity	Tool	Pipe		°C (°F)	The state of the s			°C (°F)			kgf/cm² (psi)			
(B.T.U)	1001	Length (m/ft)	HEX In	HEX Mid.	HEX Out	Suction	INV Td	HEX In	HEX Mid.	HEX Out	Pressure High	Pressure Low		
9k UA	UA3	7.5(24.6)	66 (151)	49.3 (121)	48.1 (119)	20.8 (70)	75.2 (167)	15.6 (60)	16.4 (62)	19.5 (67)	31.8 (451)	11.5 (164)		
98		20(65.6)	64.3 (148)	48.2 (119)	46.9 (116)	21.8 (71)	77.0 (171)	14.2 (58)	14.6 (58)	19.3 (67)	30.7 (435)	11.0 (157)		
106		7.5(24.6)	63.5 (146)	51.1 (124)	44.4 (112)	14.2 (58)	72.9 (163)	16.8 (56)	13.3 (56)	14.3 (58)	32.2 (457)	10.6 (151)		
12k	UL2	20(65.6)	63.2 (146)	50.3 (122)	44.3 (112)	14.3 (58)	73.0 (163)	12.8 (55)	12.8 (55)	14.3 (58)	32 (454)	10.8 (153)		
101	1112	7.5(24.6)	65.6 (150)	48.8 (120)	44.6 (112)	15.1 (59)	75.7 (168)	11.3 (52)	11.2 (52)	13.4 (56)	31.2 (443)	9.8 (139)		
18k	UL2	20(65.6)	64.5 (148)	48.7 (120)	45.5 (114)	17.2 (63)	80.1 (176)	10.8 (52)	11.2 (52)	14.8 (59)	30.9 (438)	9.7 (137)		
24k	UE	7.5(24.6)	64.5 (148)	50.8 (123)	48.5 (119)	13.0 (55)	70.9 (160)	13.3 (56)	13.4 (56)	14.2 (58)	32.1 (456)	10.8 (154)		
		30(98.4)	61.5 (143)	49.5 (121)	47.7 (118)	15.1 (59)	72.4 (162)	12.2 (54)	12.4 (54)	14.4 (58)	31.4 (446)	10.5 (150)		

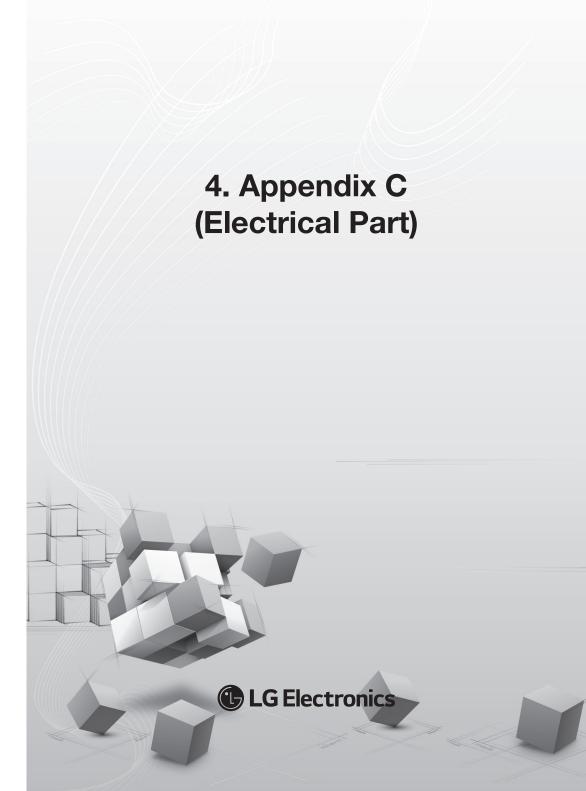
X Cycle Judgment Tolerance

Indoor Pipe Mid.: 47(117) ± 10(18) °C (°F) Pressure Low: 11(156) ± 3(43) kg/cm² (psi)

Indoor Pipe Out : 42(108) ± 10(18) ℃ (°F)

B4-2-c Heating Low Temperature : Indoor 16 °C (61 °F)/ Outdoor -10 °C (14 °F) Remote Control Setting: 30°C (86 °F) / Low

		Disc.		Indoor		Outdoor								
Capacity	Tool	Pipe		°C (°F)				kgf/cm² (psi)						
(B.T.U)	1001	Length (m/ft)	HEX In	HEX Mid.	HEX Out	Suction	INV Td	HEX In	HEX Mid.	HEX Out	Pressure High	Pressure Low		
9k UA3	UA3	7.5(24.6)	45.5 (114)	35.9 (97)	35.7 (96)	-16.2 (3)	57 (135)	-14.2 (7)	-13.6 (7)	-12.3 (10)	23.2 (330)	3.6 (51)		
98	UAS	20(65.6)	40.4 (105)	35.9 (97)	35.6 (96)	-15.6 (4)	55.2 (131)	-14.5 (6)	-13 (9)	-12.6 (9)	23 (326)	3.6 (52)		
101	111.5	7.5(24.6)	59.2 (139)	39.1 (102)	32.6 (91)	-16.2 (3)	74.6 (166)	-16.1 (3)	-16 (3)	-15.3 (5)	25.1 (356)	3.4 (48)		
12k	UL2	20(65.6)	55.6 (132)	40.5 (105)	29.3 (85)	-16.2 (3)	73.2 (164)	-15.9 (3)	-16.5 (2)	-15.5 (4)	25.9 (367)	3.5 (50)		
101.	111.2	7.5(24.6)	46.5 (116)	34.4 (94)	31.6 (89)	-19 (-2)	67.8 (154)	-17.6 (0)	-16.7 (2)	-16.1 (3)	22.5 (320)	2.9 (41)		
18k	UL2	20(65.6)	42.4 (108)	34.2 (93)	31.2 (88)	-19.1 (-2)	59.5 (139)	-16.9 (2)	-16.6 (2)	-15.9 (3)	22.1 (314)	2.9 (41)		
	UF	7.5(24.6)	47.5 (117)	37.8 (100)	32.9 (91)	-19.5 (-3)	58.9 (138)	-18.4 (-1)	-17.7 (0)	-17.6 (0)	24.3 (345)	3.0 (42)		
24k -	UE	30(98.4)	44 (111)	35.4 (96)	31.6 (89)	-19.1 (-2)	65.2 (149)	-17.6 (0)	-18.6 (-1)	-17.9 (0)	22.3 (317)	2.7 (38)		
	1151	7.5(24.6)	61.2 (142)	41.6 (107)	37.8 (100)	-21.3 (-6)	73.7 (165)	-18.0 (0)	-16.9 (2)	-15.9 (3)	27.8 (394)	2.9 (41)		
	UE1+	30(98.4)	48.7 (120)	35.2 (95)	34.1 (93)	-20.4 (-5)	64.8 (149)	-18.2 (-1)	-16.8 (2)	-15.5 (4)	22.5 (320)	2.7 (38)		



Outdoor HEX Temp.: More then $-30~(-22)~^{\circ}{\rm C}~(^{\circ}{\rm F})$ Suction: more then $-23(-9)~^{\pm}~5(9)~^{\circ}{\rm C}~(^{\circ}{\rm F})$

Indoor HEX In: 50(122) ± 15(27) ℃ (°F) Inv Td : 65(150) ± 15(27) ℃ (°F)

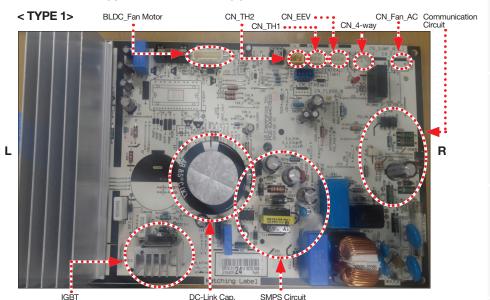
Indoor HEX Mid.: 37(99) ± 10(18) ℃ (°F) Pressure Low: $2.5(36) \sim 8(114) \text{ kg/cm}^2 \text{ (psi)}$

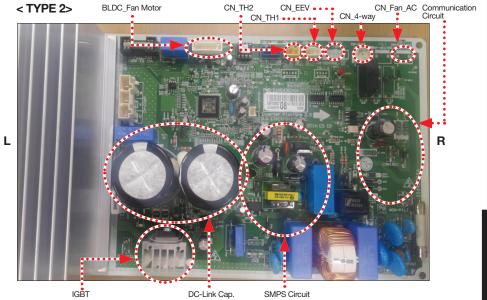
Indoor HEX Out: 37(99) ± 10(18) °C (°F)

121

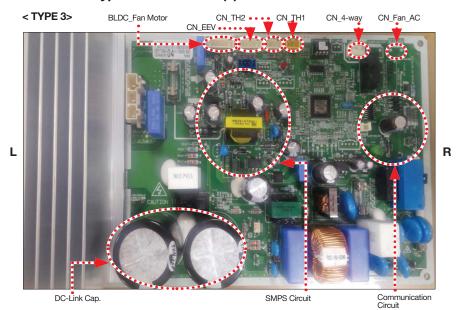
4. Appendix C (Electrical Part)

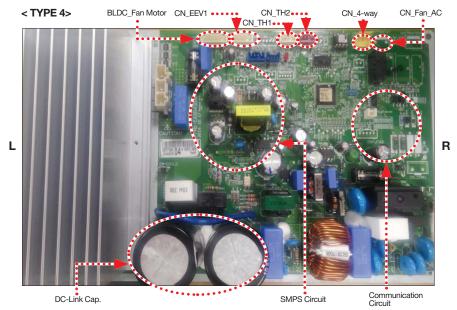
C1. PCBA

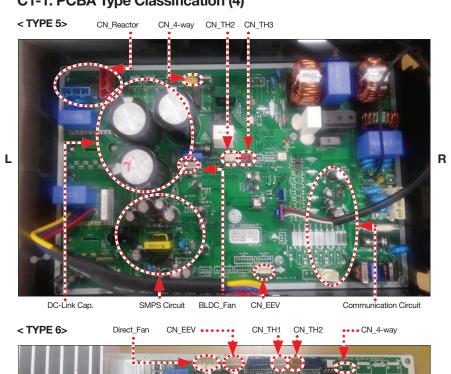

C1-1. PCBA Type Classification (1)

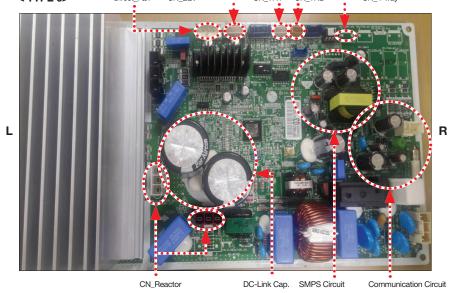

Check the type for PCBA P/NO(Part number) when performing product SVC, and refer to the measurement method for each type shown in the Appendix C.

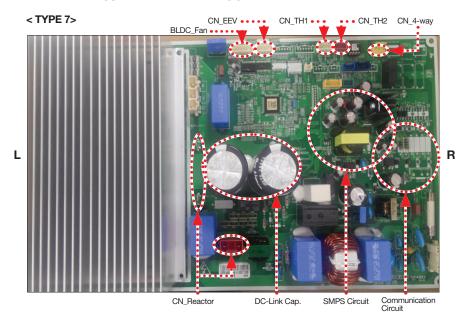
TYPE 1	TYPE 2	TYPE 3	TYPE 4
Gen2 1.5kW	Gen2 2.0kW	Gen2 2.0kW Standby	Gen2 3.0kW
EBR803609 EBR801043 EBR780506 EBR771596 EBR741212 EBR730978 EBR770678 EBR785697 EBR718478 EBR727941 EBR786320 EBR752600	EBR741496 EBR783507 EBR765706	EBR807500 EBR746319 EBR770549 EBR790985	EBR746262 EBR779920 EBR772343 EBR805607 EBR765707 EBR770391 EBR791872 EBR793644
TYPE 5	TYPE 6	TYPE 7	TYPE 8
Gen2 4.0kW	Gen2 3.0kW I-PFC	Gen2 4.0kW I-PFC	Gen2 1.5kW 115V
EBR770974 EBR750746 EBR723479 EBR785343 EBR770392	EBR788632	EBR774517	EBR772723

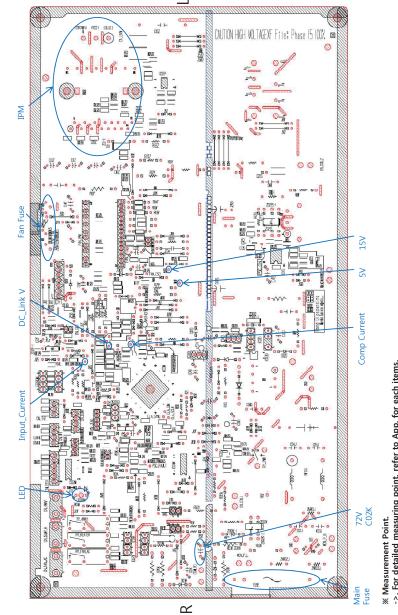

If Part Number is not in the table, Please find similar PCBA shape to see the photos.


C1-1. PCBA Type Classification (2)



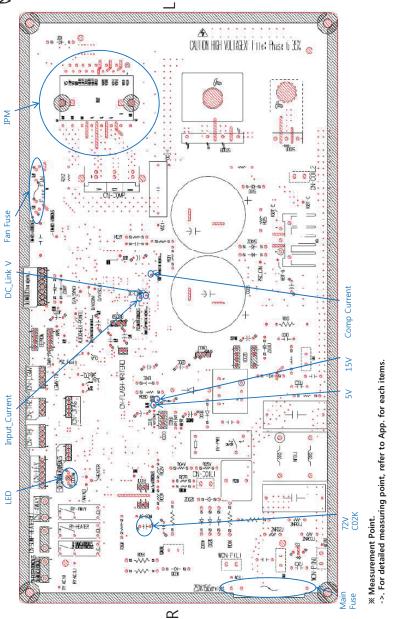

C1-1. PCBA Type Classification (3)


C1-1. PCBA Type Classification (4)

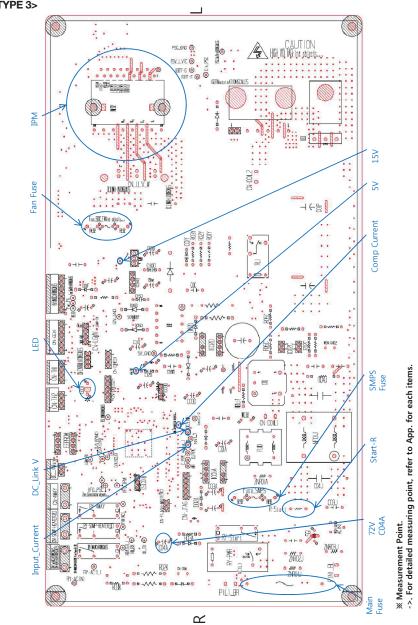


122 TROUBLE SHOOTING GUIDE BOOK LG Electronics | 23

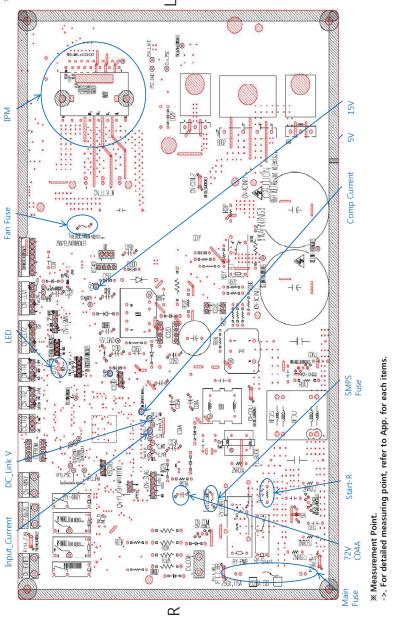
C1-1. PCBA Type Classification (5)

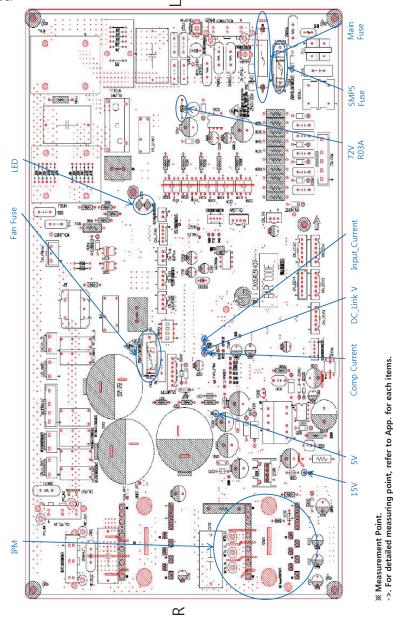


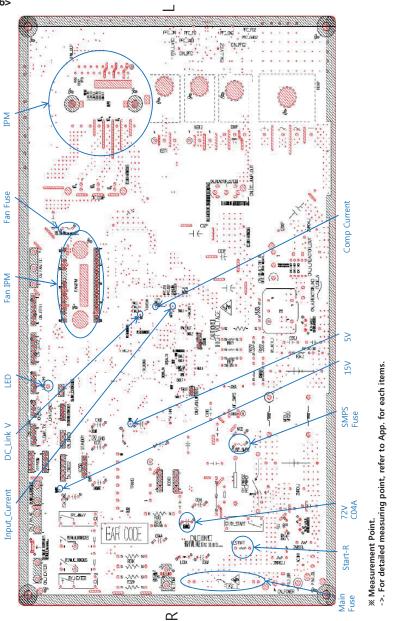
C1-2. Key measurement points for each type (1) <TYPE 1>

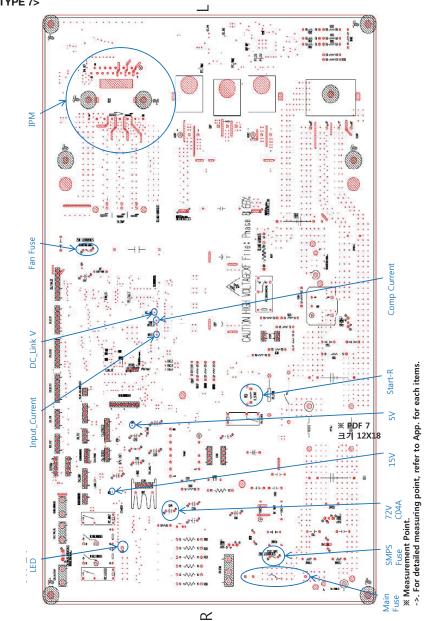


125


C1-2. Key measurement points for each type (2) <TYPE 2>


C1-2. Key measurement points for each type (3) <TYPE 3>


C1-2. Key measurement points for each type (4) <TYPE 4>


C1-2. Key measurement points for each type (5) <TYPE 5>

C1-2. Key measurement points for each type (6) <TYPE 6>

C1-2. Key measurement points for each type (7) <TYPE 7>

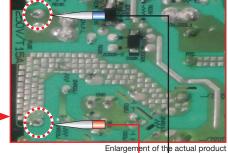
133

4. Appendix C (Electrical Part)

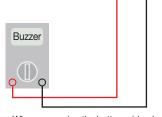
C1-3. Main Fuse (1)

Outdoor Main Fuse-Type Common

<Top side>


LED Off, CH05 occurs when main fuse is open \rightarrow Replace PCBA

If there is no sound when measuring the ends of the fuse with the sound mode of the multi meter, judge it as 'Fuse burn-out open', if sound is heard, judge it as 'Normal short'


<Bottom Side>

<Type5 Top Side>

- When measuring the bottom side, do it after scraping the coating gently.
- * For Type5, measure it at the Top side.

C1-3. Main Fuse (2)

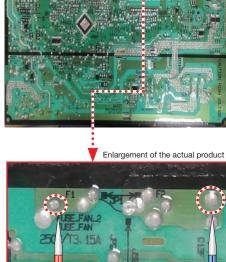
Indoor Main Fuse

Indoor unit is not operated when main fuse is open (Display Off, No operation buzzer sound)
In case CH05, CH53 occurs with outdoor PCBA LED — Replace indoor PCBA.

* When measuring the bottom side, do it after scraping the coating gently.

C1-4. BLDC Fan Motor Fuse

BLDC Fan Motor Fuse-Type Common



If there is no sound when measuring the ends of the fuse with the sound mode of the multi meter, judge it as 'Fuse burn-out open', if sound is heard, judge it as 'Normal short'

When Fan Fuse Open occurs, it is estimated that the Number 1 & 4 pin Short burn-out may occur, then CH67 occurs.

→Inspect the BLDC Motor→Replace the motor →If Motor is normal, replace the Fuse and check whether there happens same phenomenon.

<Type5 Top side>

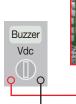
* For Type5, measure it at the Top side.

<Type6, Type7 Top side>

* For Type6 and Type7, Fuse is Box Type.

* When measuring the bottom side, do it after scraping the coating gently.

C1-5. SMPS Fuse


SMPS Fuse-Type3, Type4, Type5, Type6, Type7

If there is no sound when measuring the ends of the fuse with the sound mode of the multi meter, judge it as 'Fuse burn-out open', if sound is heard, judge it as 'Normal short'

LED Off, CH05 occurs when SMPS fuse is open → Check the exterior burn-out status of PCBA and if burnt out, replace PCBA.

* If you want to replace the fuse only, check the short status of the ends of C01A and C01D. Replace Fuse only when it is open. If it is short at the corresponding side, fuse burn-out again.

<Type5 Top side>

* For Type5, measure it at the Top side.

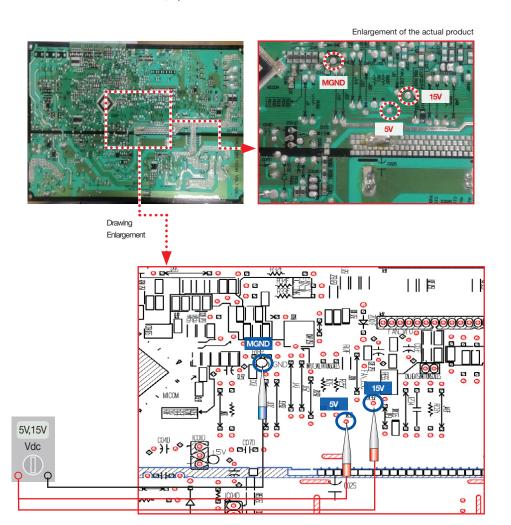
<Type6, Type7 Top side>

Enlargement of the actual product

* For Type6 and Type7, Fuse is Box Type.

Be sure to pay attention as it is high pressure.
 Be sure to pay attention as it is high pressure.
 Wear insulated gloves and be careful skin does rontact PCBA

* When measuring the bottom side, do it after scraping the coating gently.


C1-6. SMPS circuit check (1)

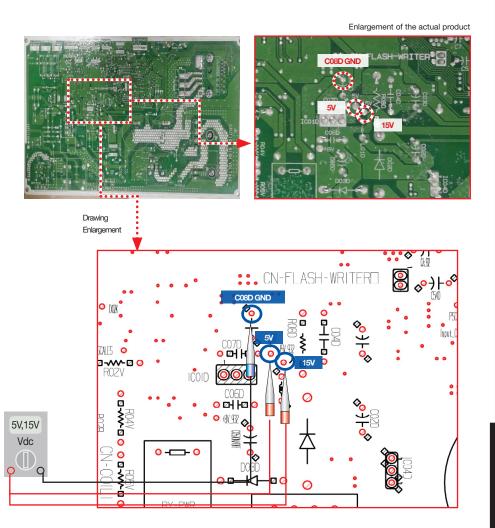
SMPS output circuit measurement method & Point-Type1

If PCBA is normal, be sure to perform voltage output at SMPS when applying power. Remove all the load connector and confirm output of SMPS 5V & 15V under the state of applying power only to PCBA.

5V: 4.75 ~ 5.25 V 15V: 14.25 ~ 15.75 V

If above value does not come Out, replace PCBA

* When measuring the bottom side, do it after scraping the coating gently.


C1-6. SMPS circuit check (2)

SMPS output circuit measurement method & Point-Type2

If PCBA is normal, be sure to perform voltage output at SMPS when applying power. Remove all the load connector and confirm output of SMPS 5V & 15V under the state of applying power only to PCBA.

5V: 4.75 ~ 5.25 V 15V: 14.25 ~ 15.75 V

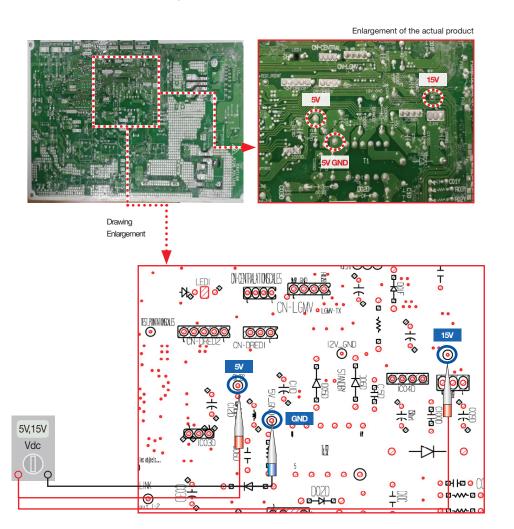
If above value does not come Out, replace PCBA.

136 TROUBLE SHOOTING GUIDE BOOK

LG Electronics

* Be sure to pay attention as it is high pressure. → Be sure to pay attention as it is high pressure.

* When measuring the bottom side, do it after scraping the coating gently.


C1-6. SMPS circuit check (3)

SMPS output circuit measurement method & Point-Type3

If PCBA is normal, be sure to perform voltage output at SMPS when applying power. Remove all the load connector and confirm output of SMPS 5V & 15V under the state of applying power only to PCBA.

5V: 4.75 ~ 5.25 V 15V: 14.25 ~ 15.75 V

If above value does not come Out, replace PCBA.

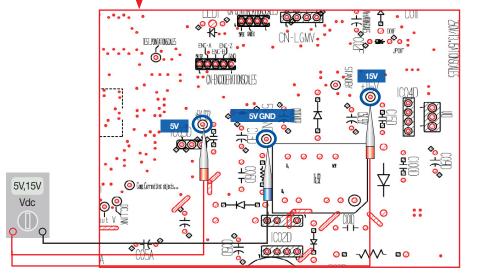
* Be sure to pay attention as it is high pressure. → Be sure to pay attention as it is high pressure. Wear insulated gloves and be careful skin does not

* When measuring the bottom side, do it after scraping the coating gently.

C1-6. SMPS circuit check (4)

SMPS output circuit measurement method & Point-Type4

If PCBA is normal, be sure to perform voltage output at SMPS when applying power. Remove all the load connector and confirm output of SMPS 5V & 15V under the state of applying power only to PCBA.


5V: 4.75 ~ 5.25 V 15V: 14.25 ~ 15.75 V

If above value does not come Out, replace PCBA.

Drawing

Enlargement

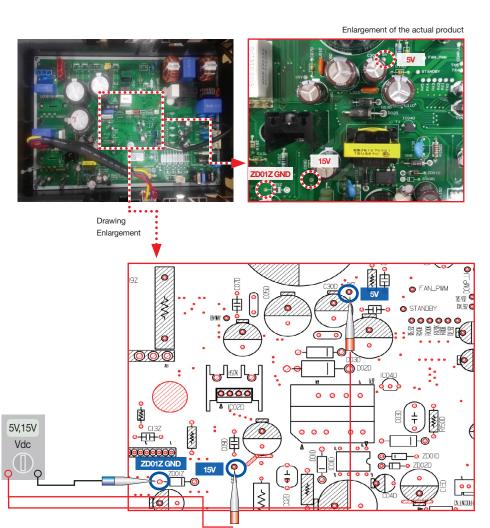
Enlargement of the actual product

LG Electronics

* Be sure to pay attention as it is high pressure. → Be sure to pay attention as it is high pressure.

* When measuring the bottom side, do it after scraping the coating gently.

C1-6. SMPS circuit check (5)


SMPS output circuit measurement method & Point-Type5

If PCBA is normal, be sure to perform voltage output at SMPS when applying power.

Remove all the load connector and confirm output of SMPS 5V & 15V under the state of applying power only to PCBA.

5V: 4.75 ~ 5.25 V 15V: 14.25 ~ 15.75 V

If above value does not come Out, replace PCBA.

* Be sure to pay attention as it is high pressure. → Be sure to pay attention as it is high pressure. Wear insulated gloves and be careful skin does not

* When measuring the bottom side, do it after scraping the coating gently.

C1-6. SMPS circuit check (6)

SMPS output circuit measurement method & Point-Type6

If PCBA is normal, be sure to perform voltage output at SMPS when applying power.

Remove all the load connector and confirm output of SMPS 5V & 15V under the state of applying power only to

5V: 4.75 ~ 5.25 V 15V: 14.25 ~ 15.75 V

If above value does not come Out, replace PCBA.

* Be sure to pay attention as it is high pressure.

→ Be sure to pay attention as it is high pressure.

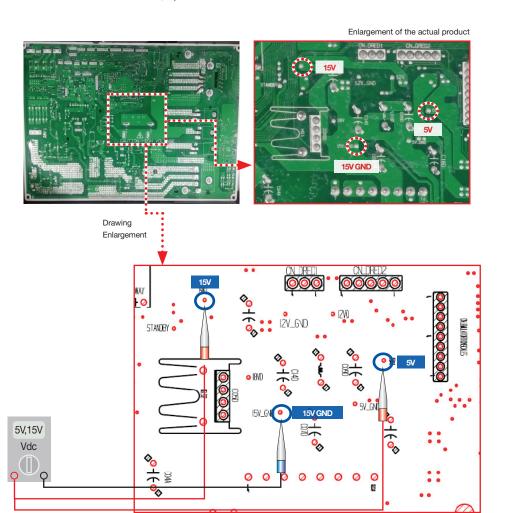
* When measuring the bottom side, do it after scraping the coating gently.

· Wear insulated gloves and be careful skin does not

4. Appendix C (Electrical Part)

* Be sure to pay attention as it is high pressure. → Be sure to pay attention as it is high pressure.

* When measuring the bottom side, do it after scraping the coating gently.

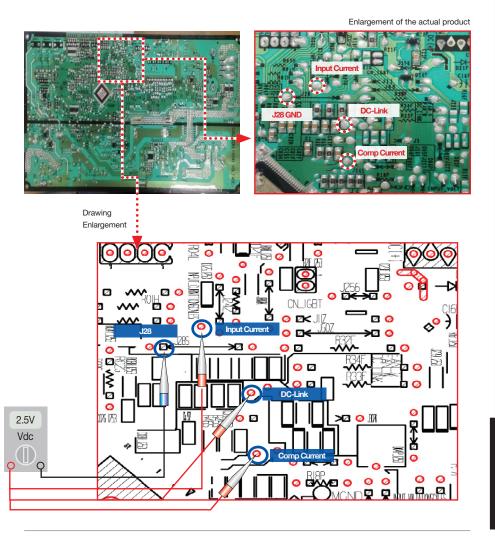

C1-6. SMPS circuit check (7)

SMPS output circuit measurement method & Point-Type7

If PCBA is normal, be sure to perform voltage output at SMPS when applying power. Remove all the load connector and confirm output of SMPS 5V & 15V under the state of applying power only to PCBA.

5V: 4.75 ~ 5.25 V 15V: 14.25 ~ 15.75 V

If above value does not come Out, replace PCBA.



C1-7. Detecting part Circuit check (1)

Detecting part circuit measurement method & Point-Type1

When error occurs, determine whether PCBA is normal by measuring point for confirmation. After applying power, measure each point by multi meter Vdc. If determined as abnormal, replace PCBA.

- (1) Input Current: CH22 may occur if the input current sensing circuit is abnormal. [Normal: 0~5V]
- (2) DC-Link: CH23 may occur if DC-Link voltage sensing circuit is abnormal. [Normal: 2.3~2.7V]
- (3) Comp Current: CH21 & CH29 may occur if Comp. current sensing circuit is abnormal. [Normal: 2.3~2.7V]

* Be sure to pay attention as it is high pressure.

→ Be sure to pay attention as it is high pressure.

* When measuring the bottom side, do it after scraping the coating gently.

· Wear insulated gloves and be careful skin does not

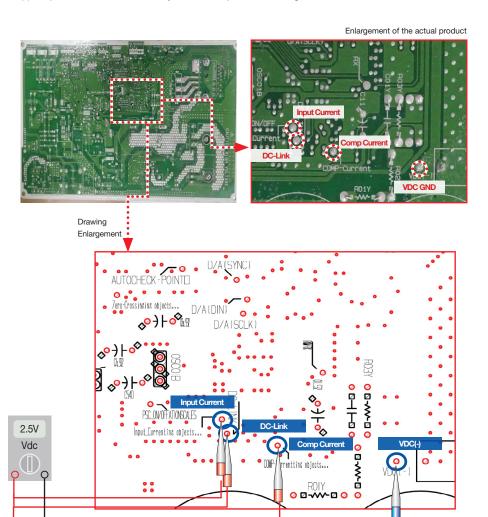
4. Appendix C (Electrical Part)

* Be sure to pay attention as it is high pressure. \rightarrow Be sure to pay attention as it is high pressure. Wear insulated gloves and be careful skin does not

* When measuring the bottom side, do it after scraping the coating gently.

C1-7. Detecting part Circuit check (2)

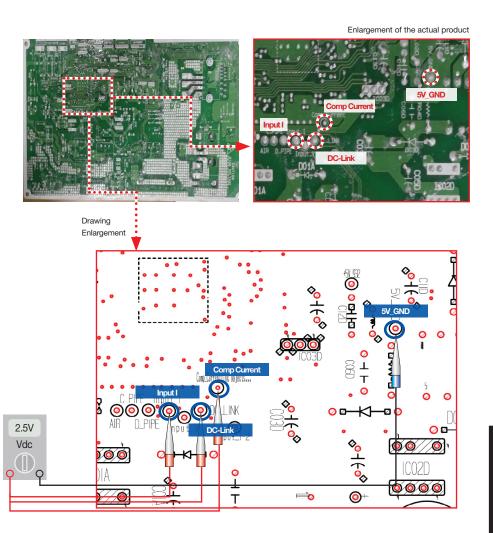
Detecting part circuit measurement method & Point-Type2


When error occurs, determine whether PCBA is normal by measuring point for confirmation. After applying power, measure each point by multi meter Vdc.

Each point is normal between 2.3V ~ 2.7V → If determined as abnormal, replace PCBA.

(1)Input Current: CH22 may occur if the input current sensing circuit is abnormal.

(2)DC-Link: CH23 may occur if DC-Link voltage sensing circuit is abnormal.


(3)Comp Current: CH21 & CH29 may occur if Comp. current sensing circuit is abnormal.

C1-7. Detecting part Circuit check (3)

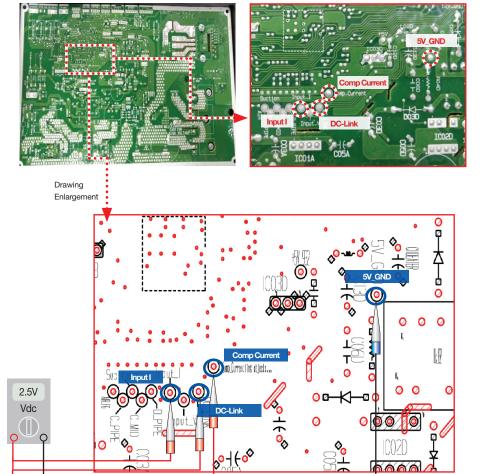
Detecting part circuit measurement method & Point-Type3

When error occurs, determine whether PCBA is normal by measuring point for confirmation. After applying power, measure each point by multi meter Vdc. Each point is normal between 2.3V ~ 2.7V —If determined as abnormal, replace PCBA. (1)Input Current: CH22 may occur if the input current sensing circuit is abnormal. (2)DC-Link: CH23 may occur if DC-Link voltage sensing circuit is abnormal. (3)Comp Current: CH21 & CH29 may occur if Comp. current sensing circuit is abnormal.

* Be sure to pay attention as it is high pressure. → Be sure to pay attention as it is high pressure. Wear insulated gloves and be careful skin does not

* When measuring the bottom side, do it after scraping the coating gently.

C1-7. Detecting part Circuit check (4)


Detecting part circuit measurement method & Point-Type4

When error occurs, determine whether PCBA is normal by measuring point for confirmation. After applying power, measure each point by multi meter Vdc. Each point is normal between 2.3V ~ 2.7V —If determined as abnormal, replace PCBA.

(1)Input Current: CH22 may occur if the input current sensing circuit is abnormal. (2)DC-Link: CH23 may occur if DC-Link voltage sensing circuit is abnormal.

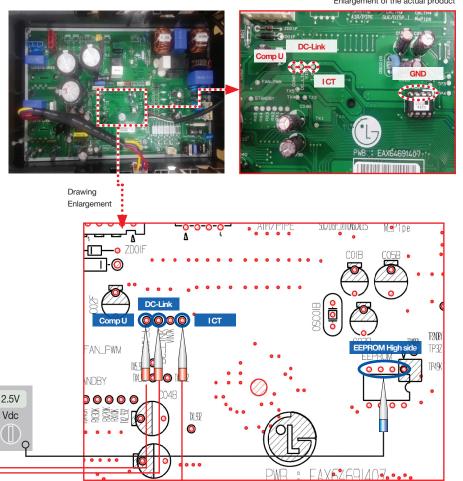
(3)Comp Current: CH21 & CH29 may occur if Comp. current sensing circuit is abnormal.

Enlargement of the actual product

* Be sure to pay attention as it is high pressure. → Be sure to pay attention as it is high pressure. Wear insulated gloves and be careful skin does not

* When measuring the bottom side, do it after scraping the coating gently.

C1-7. Detecting part Circuit check (5)

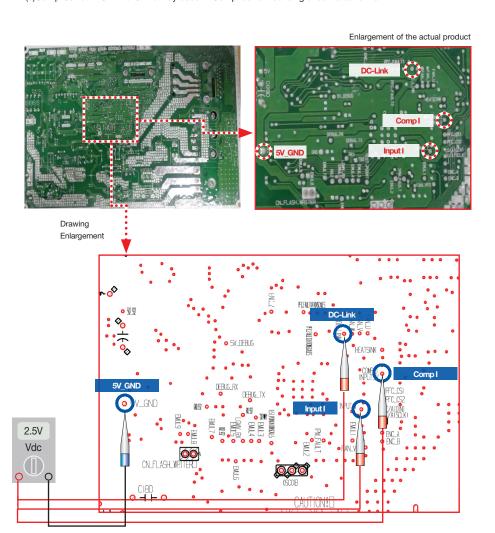

Detecting part circuit measurement method & Point-Type5

When error occurs, determine whether PCBA is normal by measuring point for confirmation. After applying power, measure each point by multi meter Vdc. Each point is normal between 2.3V ~ 2.7V → If determined as abnormal, replace PCBA.

(1)Input Current: CH22 may occur if the input current sensing circuit is abnormal. (2)DC-Link: CH23 may occur if DC-Link voltage sensing circuit is abnormal.

(3)Comp Current: CH21 & CH29 may occur if Comp. current sensing circuit is abnormal.

Enlargement of the actual product

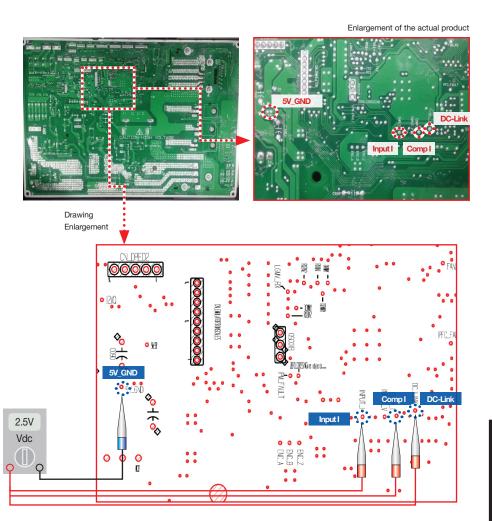

* Be sure to pay attention as it is high pressure. \rightarrow Be sure to pay attention as it is high pressure. Wear insulated gloves and be careful skin does not

C1-7. Detecting part Circuit check (6)

Detecting part circuit measurement method & Point-Type6

When error occurs, determine whether PCBA is normal by measuring point for confirmation. After applying power, measure each point by multi meter Vdc. Each point is normal between 2.3V ~ 2.7V —If determined as abnormal, replace PCBA. (1)Input Current: CH22 may occur if the input current sensing circuit is abnormal. (2)DC-Link: CH23 may occur if DC-Link voltage sensing circuit is abnormal.

(3)Comp Current: CH21 & CH29 may occur if Comp. current sensing circuit is abnormal.


* Be sure to pay attention as it is high pressure. → Be sure to pay attention as it is high pressure. Wear insulated gloves and be careful skin does not

* When measuring the bottom side, do it after scraping the coating gently.

C1-7. Detecting part Circuit check (7)

Detecting part circuit measurement method & Point-Type7

When error occurs, determine whether PCBA is normal by measuring point for confirmation. After applying power, measure each point by multi meter Vdc. Each point is normal between 2.3V ~ 2.7V → If determined as abnormal, replace PCBA. (1)Input Current: CH22 may occur if the input current sensing circuit is abnormal. (2)DC-Link: CH23 may occur if DC-Link voltage sensing circuit is abnormal. (3)Comp Current: CH21 & CH29 may occur if Comp. current sensing circuit is abnormal.

C1-8. DC-Link Check

Check DC-Link voltage using LG-MV, SIMS-Type common

Г	INV,목표주파수[Hz]	Cond mid 온도	INV.토충온도	입력 전압[V]	입력 전류[A]	목표 Td	FAN1, 목표 RPM	FAN2, 목표 RPM
ı	60	47,20		230	7,80		840	I MRE, TIL DEM
ŀ	INV,현재주파수[Hz]	Inv,흡입 온도		운전 모드				FAN2,현재 RPM
ŀ								FANZ, MAIN NEW
ı	60			냉방	0,00		840	U
L				입력전원주파수	DC_LINK 목표전압[V]	실외_Main_LEV	Fan1 선간전압	Fan2선간전압
L	9,60			50		0	0	0
	D축 전류[A]		Fan Heatsink 온도	소비전력[W]	DC_LINK 현재전압	싫내기 용량합	Fan1상전류	Fan2상전류
	3,20		0,00	1803		24	0,00	0,00
	COMP 기준 STEP	현재 Step	제품군	ERROR CODE	客心ハエ カナ	재기동 Timer	Fan1 Target Step	Fan2 Target Step
Г	13	13	RAC	0	150	255	12	0
	전류 ref,[A]	Q축 전류 ref,[A]	D축 전류 ref,[A]	Drive 용량	Converter Type	실내중간센서유무	EEPROM C/S High	EEPROM C/S Low
Г	10,40	9,80		None	PSC	있음	0xe3	0x4d
	DC Peak Cnt	DC_Link Low Cnt	Inv 기동실패 Cnt	총전류에러 Cnt	PFC/PSC Fault Cnt	Fan Lock Cnt	Inv,D-pipe_High Cnt	HeatSink 온도 Cnt
	0	0	0	0	0	0	0	0
П	Comp 상전류 Cnt	C-Pipe High Cnt	고압 S/W Cnt	Comp 운전시간[sec]	Comp정시제어주기[se	EEV정시제어주기[sec	제상단계	습도[%]
	0	0	0	255	45	0	0	0
Π	Min Step			설정온도차	EEV 정시증분	Comp PI증분	Comp 운전모드	EEV 운전모드
Г	1	19	없음	8,20	0	2	정시	초기화(Full)
Ĺ	고압[kpa]	저입[kpa]	11P_148	11P_158	12P_68	12P_7B	12P_14B	12P_15B
I	0	0	0	0	0	0	0	0

In normal PCBA, The value should be close to the value of the table below when power is applied.

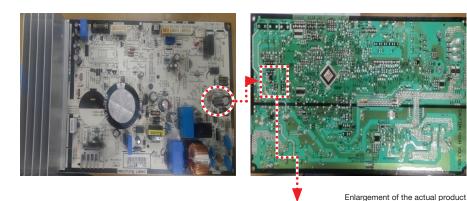
→When there comes out abnormal DC-Link output value, replace PCBA.

When CH23 occurs, verify DC-Link voltage first through LG-MV, SIMS.

→CH23 occurs when the voltage is below 140V or over 420V.

Туре	Standard Value
Type1	290V
Type2	290V
Type3	290V
Type4	290V, 330V
Type5	380V
Type6	330V
Type7	380V

^{*} The standard value is different according to the model.



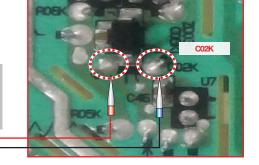
* Be sure to pay attention as it is high pressure. → Be sure to pay attention as it is high pressure. Wear insulated gloves and be careful skin does not

* When measuring the bottom side, do it after scraping the coating gently.

C1-9. Communication Part 72V Check (1)

Communication part 72V-Type1, Type2

72


Vdc

Measure it under the power-on status. Measure with multi meter to C02K at the back side of PCBA.

Measure it by touching red Probe to Remark straight line and black Probe to the curve as shown on the photograph.

Judge it as normal if it is in the range of $69 \sim 75V$ with $72V \pm 5\%$. →In case of abnormal output, replace

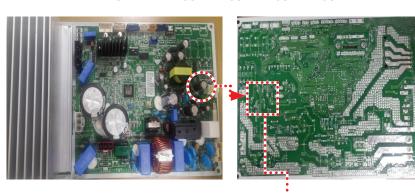
PCBA.

Communication part 72V-Type5

Measure it under the power-on status. Measure with multi meter to the ends of R03A at the front side of PCBA.

LG Electronics

151

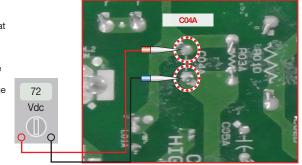

* Be sure to pay attention as it is high pressure. → Be sure to pay attention as it is high pressure.

Enlargement of the actual product

* When measuring the bottom side, do it after scraping the coating gently.

C1-9. Communication Part 72V Check (2)

Communication part 72V-Type3, Type4, Type6, Type7

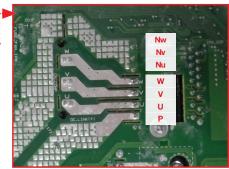


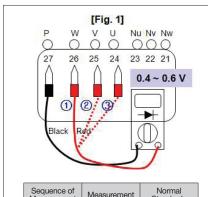
Measure it under the power-on status.

Measure with multi meter to C02K at the back side of PCBA. Measure it by touching red Probe to Remark straight line and black Probe to the curve as shown on the photograph.

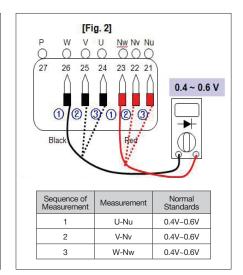
Judge it as normal if it is in the range of $69 \sim 75V$ with $72V \pm 5\%$.

→In case of abnormal output, replace PCBA.


* When measuring the bottom side, do it after scraping the coating gently.


C1-10. IPM Check (1)

Way to check IPM-Type Common


Enlargement of the actual product

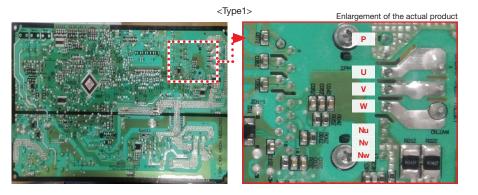
Sequence of Measurement	Measurement	Normal Standards
1	P-U	0.4V~0.6V
2	P-V	0.4V~0.6V
3	P-W	0.4V~0.6V
	Sequence of Measurement 1 2 3	Measurement Measurement

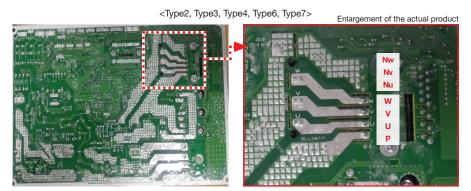
To verify the internal burn-out of the IPM, measure Diode between P part and UVW phase. Then, measure Diode between N part and UVW.

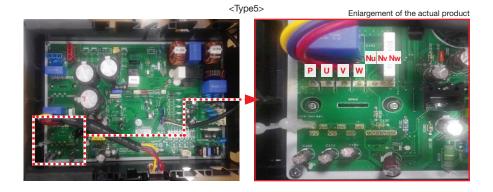
After measurement, if the measured value exists between 0.4~0.6V, judge it as normal.

Verify additionally whether the remaining pins became

→If the measured value deviates from the normal value or if it becomes short, CH21 occurs immediately.

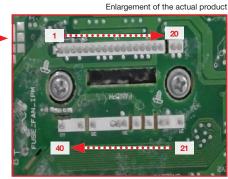

If it is judged as abnormal, replace PCBA.


* If touched one side by Node whose Nu. Nv, Nw is same, UVW can be measured.

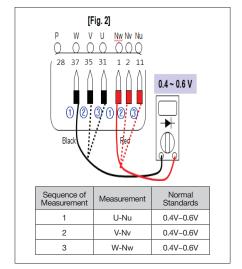

* When measuring the bottom side, do it after scraping the coating gently.

C1-10. IPM Check (2)

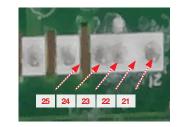
IPM measuring Point for each type



* When measuring the bottom side, do it after scraping the coating gently.


C1-11. External type Fan IPM Check (1)

Check Fan IPM of External type-Type6

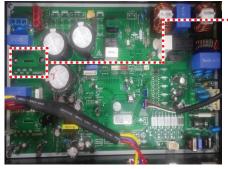


To verify the internal burn-out of the Fan IPM, measure Diode between P part and UVW phase. Then, measure Diode between Nu, Nv, Nw part and UVW.

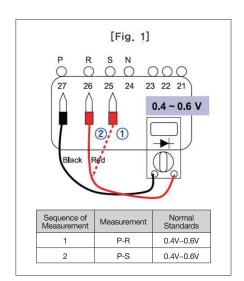
After measurement, if the measured value exists between 0.4~0.6V, judge it as normal.

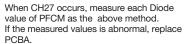
Verify additionally whether the remaining pins became

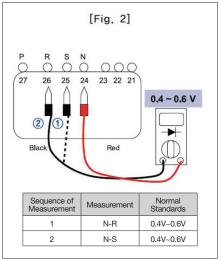
- →If the measured value deviates from the normal value or if it becomes short, CH67 occurs immediately.
- →If Fan IPM was burnt out, Fan Fuse may be burn out.

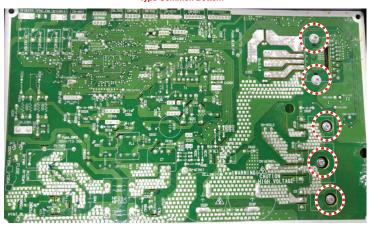


* When measuring the bottom side, do it after scraping the coating gently.


C1-12. PFCM Check


PFCM Diode normality check-Type5


Enlargement of the actual product


** In case of old model, it may occur intermittently, but in case of new model, CH27 does not occur.

C1-13. Heat-Sink Check

Heat-Sink Screw Tightening check - Type Common

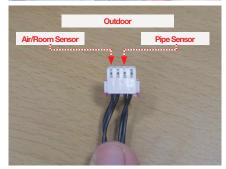
When the corresponding screw below was not tightened well, CH62 may occur. If error occurs, fasten the corresponding point firmly with the drive

Type Common Bottom

Type5 Top

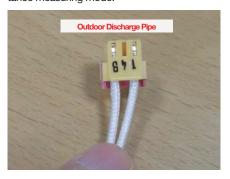
* When measuring the bottom side, do it after scraping the coating gently

C2. Sensor


C2-1. Air / Pipe Sensor Check

Sensor Resistance check

Measure the resistance of the sensor ends with the resistance measuring mode of the multi meter. When measuring room temperature, refer to the measuring point and value of the followings, and for detailed sensor table, refer to APP.



	[Table]	at 25°C, ±10%
In/Out door	Value	Error
Air/Room	10 kΩ	Indoor : CH01 Outdoor : CH44
Pipe	5kΩ	Indoor : CH02 Outdoor : CH45

In addition, in case of the single sensor also, measure the sensor ends resistance value with resistance measuring mode.

[Table]	at 25℃, ±10%	
Value	Error	
5kΩ	CH06	
5kΩ	CH12	
Value	Error	
200 kΩ	CH41	
10 kΩ	CH65	
	Value 5kΩ 5kΩ Value 200kΩ	

C2-2. Pressure Sensor Check

Sensor Resistance check

Measure the resistance value between each pins with the resistance value measuring mode of the

When measuring room temperature, judge it whether it is normal referring to the measuring point and value of the followings.

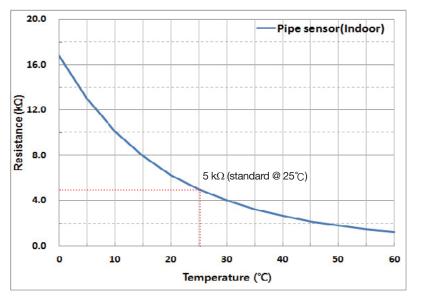
[Iable]								
	Value							
No.1- No.3	90KΩ ± 10%							
No.2 -No. 3	≥ 5MQ							
No.1 -No. 2	≥ 15MΩ							

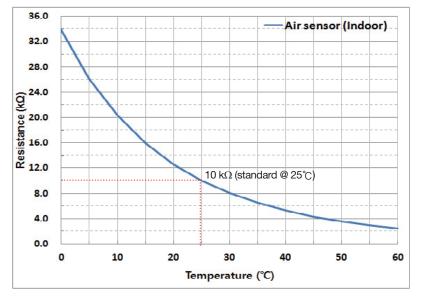
158 TROUBLE SHOOTING GUIDE BOOK **LG Electronics**

C2-3. In/Outdoor Sensor resistance Table (1)

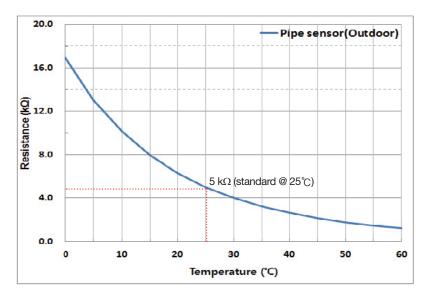
• Outdoor Unit Sensor

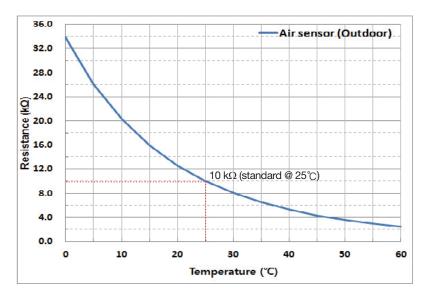
Tempe	erature	Pipe S	Sensor	D-Pipe sen	sor(Inv Td)	Air Se	ensor
°C	°F	Resistance (kΩ)	Voltage (V)	Resistance (kΩ)	Voltage (V)	Resistance (kΩ)	Voltage (∨)
-30	-22	102.2	4.71	-	-	204.3	4.72
-25	-13	73.5	4.60	-	-	147.0	4.62
-20	-4	53.5	4.47	-	-	107.1	4.49
-15	5	39.5	4.31	-	-	79.0	4.34
-10	14	29.5	4.12	-	-	59.0	4.15
-5	23	22.2	22.2 3.90		-	44.5	3.93
0	32	17.0	3.65	586	4.85	33.9	3.68
5	41	13.0	3.38	465	4.81	26.1	3.42
10	50	10.1	3.10	372	4.77	20.3	3.13
15	59	7.9	2.80	301	4.72	15.9	2.84
20	68	6.3	2.51	244	4.66	12.6	2.55
25	77	5.0	2.23	200	4.59	10.0	2.26
30	86	4.0	1.97	165	4.51	8.0	1.99
35	95	3.2	1.72	137	4.42	6.5	1.74
40	104	2.6	1.50	114	4.32	5.3	1.52
45	113	2.2	1.30	96	4.21	4.3	1.32
50	122	1.8	1.12	81	4.09	3.6	1.14
55	131	1.5	0.97	68	3.96	3.0	0.98
60	140	1.2	0.84	58	3.82	2.5	0.85
Toler	ance	± 30%	± 10%	± 30%	-	± 30%	± 10%

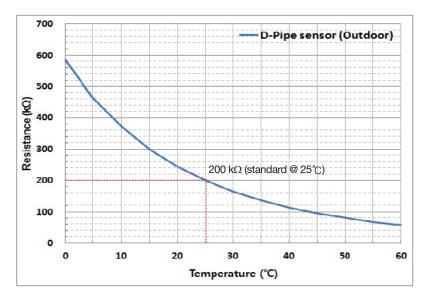

Indoor Unit Sensor


Tempe	erature	Pipe S	ensor	Air Sensor			
°C	°F	Resistance (kΩ)	Voltage (V)	Resistance (kΩ)	Voltage (V)		
0	32	16.8	3.65	33.9	3.68		
5	41	13.0	3.38	26.1	3.42		
10	50	10.1	3.10	20.3	3.13		
15	59	7.9	2.80	15.9	2.84		
20	68	6.3	2.51	12.6	2.55		
25	77	5.0	2.23	10.0 8.0	2.26		
30	86	4.0	1.97		1.99		
35	95	3.3	1.72	6.5	1.74		
40	104	2.7	1.50	5.3	1.52		
45	113	2.2	1.30	4.3	1.32		
50	122	1.8	1.12	3.6	1.14		
55	131	1.5	0.97	3.0	0.98		
60	140	1.2	0.84	2.5	0.85		
Toler	ance	-	± 10%	-	± 10%		

		Resistance @25°C
	Pipe	5.0
Outdoor	Air	10.0
	D-Pipe	200.0
Indoor	Pipe	5.0
indoor	Air	10.0

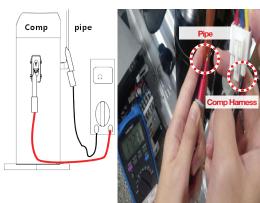

 $\mathsf{UNIT}:\mathsf{k}\Omega$


C2-3. In/Outdoor Sensor resistance Table (2)



C2-3. In/Outdoor Sensor resistance Table (3)

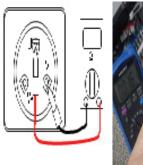
C2-3. In/Outdoor Sensor resistance Table (4)



C3. Compressor

C3-1. Check insulation between Compressor and Pipe

After checking insulation between compressor and pipe, if the compressor resistance value is abnormal, replace compressor.


Measure the resistance between Compressor harness and pipe surface with multi meter.

- * It is possible to remove the compressor harness and measure the resistance between each phase of the compressor and pipe directly.
- When measuring, judge the resistance value after waiting number of seconds after placing multi meter.
- When the insulation between compressor and pipe is broken, PCBA may be burn out. So, in case of PCBA, check it referring to the measuring method of IPM.

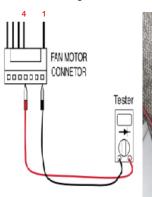
Measuring point	Normal value
U - Pipe	≥ 10M Q
V - Pipe	≥ 10M <i>Q</i>
W - Pipe	≥ 10M Q

C3-2. Check Compressor Line Resistance

- It is possible to remove the compressor harness and measure the resistance between
- When measuring, judge the resistance value after waiting number of seconds after placing multi meter.

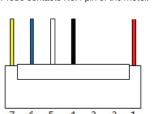
Comp. Line Resistance						
U - V	0.5 ∼ 3.0 Ω					
V - W	0.5 ~ 3.0 Ω					
W - U	0.5 ~ 3.0 Ω					

* Refer to the line resistance value for compressor type.


GA	092	2 GA102			GKT128	GKT141	GKT176	GJT240	5F	RS	DA128A		
MA	МС	MA	MB	MD	MF	MK	MA	MB	MF	MB	102XAA	132Z	20F
2.56	1.95	1.59	1.73	1.07	1.08	2.06	1.13	1.54	1.14	0.63	1.31	0.80	1.31

C4. Motor

C4-1. BLDC Motor


BLDC Motor Diode Measurement check

Inspect indoor and outdoor BLDC motor and replace BLDC motor when it is abnormal. When measuring, set No. 1 and No. 4 of BLDC motor as multi meter Diode mode and judge it as normal in the range of 0.8V ~ 1.2V.

When measuring, judge the voltage value of the diode after waiting number of seconds after placing multi meter. It is measurable only when the red Probe of the multi meter contacts No.4 pin of the motor, and when the black Probe contacts No.1 pin of the motor.

BLDC Motor Resistance measurement check

Measure the resistance value with the following point. If the unit of the measuring value becomes different or when it comes out Open, Short, judge it as abnormal and replace the motor. (The value is different depending on the maker and the motor type.)

BLDC Motor line resistance	
No.1 - No.4	Open
No.4 - No.5	≥ 1K <i>Q</i>
No.4 - No.6	Open
No.4 - No.7	≥ 50K <i>Q</i>

When measuring the resistance value between lines, the black Probe of the multi meter should contact No. 4 pin.

* When measuring the bottom side, do it after scraping the coating gently.

C4-2. AC-Motor

AC-Motor PCBA Output check

After starting up the compressor at PCBA, measure the voltage between PCBA CN_FAN AC.

If the value is input voltage(220V) \pm 10%, judge it as normal \rightarrow Replace PCBA if it is abnormal.

If AC-Motor does not operate under the normal PCBA output, replace AC-Motor.

AC-Motor Resistance Measurement Check

When measuring indoor and outdoor AC-Motor, measure the resistance value of both AC-Motor pin with multi meter resistance measuring mode.

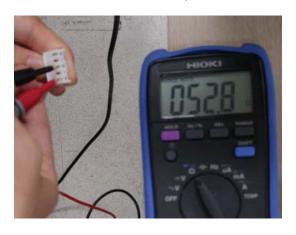
Indoors: Main(Orange – Black), Sub(Yellow – Black) Outdoors: Main(Yellow – Blue), Sub(Yellow – Red)

Refer to the table below.

[Table]

Mearsurement Pin	Normal Standard
Main(ORG-BLK)	300 <i>Q</i> ~ 600 <i>Q</i>
Sub(YEL-BLK)	600 <i>Q</i> ~ 900 <i>Q</i>

[Table]


Mearsurement Pin	Normal Standard
Main(YEL-BLU)	200 <i>Q</i> ~ 600 <i>Q</i>
Sub(YEL-Red)	200 <i>Q</i> ~ 600 <i>Q</i>

^{*}The motor resistance value is different depending on the temperature and the maker.

C4-3. Exterior fan Motor

External Fan Motor Resistance Measurement check

Separate PCBA and External fan motor connector and measure the resistance value of the connector 3 phase of the external fan motor with multi meter resistance measuring mode. If the measurement value is $51.5\Omega \pm 2.6\Omega$ or $76.8\Omega \pm 3.8\Omega$ at 20° C, judge it as normal. (The approval resistance value is different with the maker.)

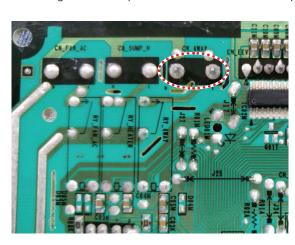
[Table]

Measurement Pin	Normal Standard
RED – BLUE	$51.5Q \pm 2.6Q$ or $76.8Q \pm 3.8Q$
BLUE – YELLOW	51.5 \(\Omega \text{ \pm 2.6 }\(\Omega \) or \(76.8 \(\Omega \text{ \pm 3.8 }\(\Omega \)
YELLOW - RED	51.5 <i>Q</i> ± 2.6 <i>Q</i> or 76.8 <i>Q</i> ± 3.8 <i>Q</i>

C5. 4-way valve

4-way Resistance Measurement check

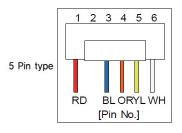
Measure the resistance value of the both 4-way pin with multi meter resistance measuring mode. If the measurement value is $21 \text{K}\Omega \pm 20\%$, judge it as normal

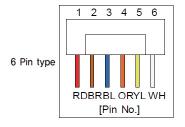

- $\ensuremath{\mathbb{X}}$ Be sure to pay attention as it is high pressure.
- → Be sure to pay attention as it is high pressure.
- → Wear insulated gloves and be careful skin does not contact PCBA

* When measuring the bottom side, do it after scraping the coating gently.

4-way PCBA output check

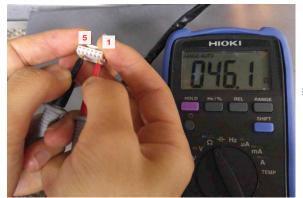
After operation of heating mode, measure the voltage across the PCBA Connector. If the rated voltage is $220V \pm 10\%$, judge PCBA as normal.


→If heating mode is not operated under the PCBA normal output, replace 4-way.


C6. EEV

EEV Resistance Measurement check

Measure the resistance value of each EEV pin with multi meter resistance measuring mode. Jude the normality referring to the value of the table below.



[Table]		
Mearsurement Pin	Normal Standard	
No.1 - No.3	45 <i>Q</i> ± 5 <i>Q</i>	
No.1 - No.4	45 <i>Q</i> ± 5 <i>Q</i>	
No.1 - No.5	45 <i>Q</i> ± 5 <i>Q</i>	
No.1 - No.6	45 <i>Q</i> ± 5 <i>Q</i>	

[100.00]		
Mearsurement Pin	Normal Standard	
No.1 - No. 3	45 <i>Q</i> ± 5 <i>Q</i>	
No.1 -No. 5	45Q ± 5Q	
No.2 -No. 4	45Q ± 5Q	
No,2 -No, 6	45Q ± 5Q	

[Table]

* There may be some value difference depending on the type of the EEV.

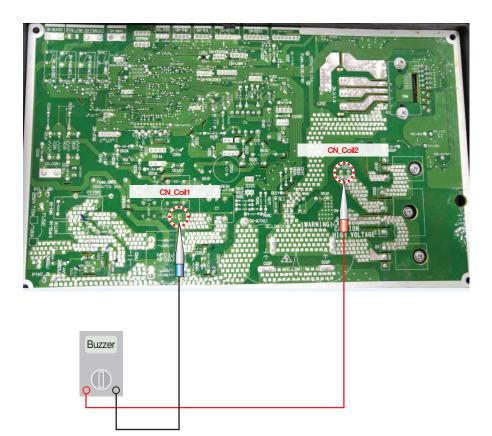
C7. Etc.

C7-1. Sump-Heater

Sump_Heater Resistance Measurement check

Measure the resistance value of the both sump heater pin with multi meter resistance measuring mode.

If the measurement value is $800 \text{K}\Omega \pm 20\%$, judge it as normal.



C7-2. Reactor Connection

Reactor PCBA Fastening check - Type common

Check whether reactor is connected by measuring whether the both fastening parts of PCBA reactor became to be short by multi meter under power-off.

Measure the both ends of CN_Coil1 & CN_Coil2, and it is normal if they become to be short.

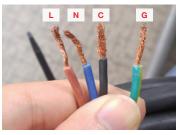
C7-3. Communication Line

Check the resistance of the connecting wires

Measure the resistance value of the both ends of the same-color connecting wire with the multi meter resistance measurement mode.

Be sure to wear the insulating gloves when measuring it and if there is no insulating gloves, measure it by twisting the wire to the Probe Pin to prevent human's hands from touching it. (If touched by both hands, human's resistance is measured.)

When measuring resistance, the resistance value may vary according to the wire length, however the low value(below 1 Ω) should be measured.



* Short can be checked by measuring the sound mode.

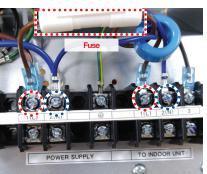
Also, it should be open when measuring the both ends of the connecting wires with each different colors.

Check each connecting status of L - N. L - C, L - G, N - C, N - G, C - G Line.

* they must be opened

C7-4. Main & Terminal Line, Comp Harness

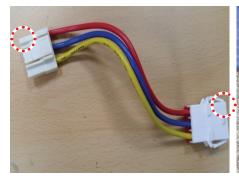
Main power wire & Terminal Jump wire check


Check whether the both ends of the same-color connecting wire is short with multi meter resistance sound mode.

When measuring the main power wire, let L,N wire contact No. 1 & No. 2 Plug in turn as it is hard to discriminate Plug and L,N wire.

When contact, consent plug and L, N wire should be matched 1:1.

For jump wire, check whether the color connecting wire is short with sound mode, and if brown wire is open, check whether the fuse is burnt out.



Comp. Wire check

Separate the Comp. Wire line and check whether the both ends of the same-color connecting wire is short with multi meter resistance sound mode.

If there is short between different-color wires, replace the hardness.

Copyright © 2015 LG Electronics. all Rights Reserved.

Address LG Electronics Inc, 84, Wanam-ro, Seongsan-gu, Changwon-si, Gyeongsangnam-do, Korea

Printed in Korea December, 2015

The specifications, designs, and information in this brochure are subject to change without notice.